We have coevolved high activity and hyperstability in subtilisin by sequentially randomizing 12 amino acid positions in calcium-free subtilisin. The optimal amino acid for each randomized site was chosen based on stability and catalytic properties and became the parent clone for the next round of mutagenesis. Together, the 12 selected mutations increased the half-life of calcium-free subtilisin at elevated temperature by 15,000-fold. The catalytic properties of the mutants were examined against a range of substrates. In general, only mutations occurring at or near the substrate-binding surface have measurable effects on catalytic constants. No direct influence of stability on catalytic properties was observed. A high-stability mutant, Sbt140, was a more efficient enzyme in terms of k(cat)/K(m) than a commercial version of subtilisin across a range of substrates but had a lower k(cat) against tight-binding substrates. The reason for this behavior was discerned by examining microscopic rate constants for the hydrolysis of a tight-binding peptide substrate. Burst kinetics were observed for this substrate, indicating that acylation is not rate-limiting. Although acylation occurs at the rate of substrate binding, k(cat) is attenuated by the slow release of the N-terminal product. Natural evolution appears to have optimized catalytic activity against a range of sequences by achieving a balance between substrate binding and the rate of release of the N-terminal product.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi047806m | DOI Listing |
Nat Commun
January 2025
School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore.
Designing efficient Ruthenium-based catalysts as practical anodes is of critical importance in proton exchange membrane water electrolysis. Here, we develop a self-assembly technique to synthesize 1 nm-thick rutile-structured high-entropy oxides (RuIrFeCoCrO) from naked metal ions assembly and oxidation at air-molten salt interface. The RuIrFeCoCrO requires an overpotential of 185 mV at 10 m A cm and maintains the high activity for over 1000 h in an acidic electrolyte via the adsorption evolution mechanism.
View Article and Find Full Text PDFJ Colloid Interface Sci
April 2025
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai, China. Electronic address:
Triblock Pluronics of polyoxyethylene (PEO) and polyoxypropylene (PPO) are identified as competent suppressors for copper (Cu) electroplating in advanced electronics manufacturing. However, the specific interfacial roles of PEO and PPO blocks in Pluronic suppressors, are not yet fully understood, which is crucial for the rational design of effective suppressors. Herein, the influences of composition and block arrangement of such Pluronics on the inhibition against Cu plating are systematically investigated.
View Article and Find Full Text PDFJ Biol Chem
January 2025
Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany. Electronic address:
Mitochondria derive the majority of their lipids from other organelles through contact sites. These lipids, primarily phosphoglycerolipids, are the main components of mitochondrial membranes. In the cell, neutral lipids like triacylglycerides (TAGs) are stored in lipid droplets, playing an important role in maintaining cellular health.
View Article and Find Full Text PDFBiosens Bioelectron
January 2025
School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China.
Noble metal nanoparticles have attracted tremendous attention as the promising signal reporters for catalytic-colorimetric lateral flow immunoassay (LFIA). However, it remains great challenges for improving their stability and catalytic activity. Herein, first, a kind of porphyrinic based metal-organic framework (MOF) was used as a carrier for loading platinum (Pt) nanoparticles to avoid its aggregation.
View Article and Find Full Text PDFBiochemistry
January 2025
Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg im Breisgau 79106, Germany.
Human CblC catalyzes the indispensable processing of dietary vitamin B by the removal of its β-axial ligand and an either one- or two-electron reduction of its cobalt center to yield cob(II)alamin and cob(I)alamin, respectively. Human CblC possesses five cysteine residues of an unknown function. We hypothesized that Cys149, conserved in mammals, tunes the CblC reactivity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!