Objective: Lung volume measurement by fetal magnetic resonance imaging (fetMRI) has been used to predict survival of fetuses with isolated congenital diaphragmatic hernia (CDH). So far, the accuracy and precision of fetMRI for volumetry of either the normal or hypoplastic developing lung has not been formally studied.

Methods: A total of nine sheep carrying 14 fetuses underwent fetMRI under general anesthesia at a mean of 118 days' gestational age (term = 145 days). A total of 61 organs were measured in nine normal fetal sheep and five that underwent surgical creation of diaphragmatic hernia (DH), so as to induce pulmonary hypoplasia. Lungs were measured on T2-WI (weighted images) in three different planes, while liver and kidneys were measured in the axial (T1-WI) and sagittal (T2-WI) planes, respectively. Necropsy was done within 24 h after fetMRI to determine the volume postmortem by the water displacement method. Values were linearly correlated and a Bland and Altman analysis was done for volume measurement comparison, calculating means +/- SD, bias (mean of the difference of volume measurements), precision (SD of the difference) and absolute and proportionate limits of agreement for both methods. The accuracy of fetMRI volume measurement was determined for different organ groups by calculating the median relative error and precision index, both being measures of error in proportion to the magnitude of the volume measured, as a clinically relevant proxy of potential errors.

Results: The fetMRI volume measurements were on average larger than postmortem volumes, except for the kidneys. Kidney volume determination had a relative error of 29%, while measurements of larger organs had larger relative errors (42% for liver). Normal lungs were less accurately measured in the coronal or sagittal than in the axial plane (relative error 53%, 73% and 38%, respectively; P < 0.05 for sagittal vs. axial). Axially-measured lung volumes were more accurate for lungs of normal sheep compared to DH lungs (relative error 38% vs. 73%, respectively; P < 0.05).

Conclusion: FetMRI measured systematically higher volumes for organs such as fetal liver or lung. This may be related to fluid loss or lack of perfusion at the time of necropsy. Measurement of lung volume by fetMRI was most accurate in the axial plane. Measurements of lung and liver volumes by fetMRI in normal sheep were both in agreement with volumes measured at necropsy. Loss of accuracy for DH-lungs in comparison with the accuracy when measuring other similarly small organs, such as kidneys, suggests that fetMRI measurements can be less accurate for hypoplastic lungs related to CDH. With improving hardware, it might become easier to render the fetal lung and determine its volume reliably.

Download full-text PDF

Source
http://dx.doi.org/10.1002/uog.1866DOI Listing

Publication Analysis

Top Keywords

relative error
16
volume measurement
12
volume
10
fetmri
10
magnetic resonance
8
resonance imaging
8
fetal sheep
8
lung volume
8
diaphragmatic hernia
8
determine volume
8

Similar Publications

Accurate Physics-Based Prediction of Binding Affinities of RNA- and DNA-Targeting Ligands.

J Chem Inf Model

January 2025

Schrödinger Incorporated, Cambridge, Massachusetts 02142, United States.

Article Synopsis
  • Predicting how well ligands bind to nucleic acids is challenging, which limits the development of small-molecule drugs for diseases like cancer and infections.
  • Recent advancements in computational methods, particularly free-energy perturbation (FEP), have improved predictions for protein-ligand binding affinities, but its effectiveness for nucleic acids was unclear.
  • This study found that using FEP+ software with the OPLS4 force field can accurately predict binding energies for over 100 ligands interacting with DNA/RNA, achieving predictions that closely match experimental data and could aid drug discovery.
View Article and Find Full Text PDF

Griscelli syndrome is a rare autosomal recessive disorder characterised by pigmentary dilution of skin and hair, recurrent skin and pulmonary infections, neurological manifestations, and immunodeficiency. We present a four-month-old female child with hypopigmented silvery hair and a history of recurrent hospitalisations for respiratory illness. The child was extensively evaluated for inborn errors of immunity (IEI), and the final diagnosis of type 2 Griscelli syndrome was made only after genetic testing.

View Article and Find Full Text PDF

Background: Glucose is an essential molecule in energy metabolism. Dysregulated glucose metabolism, the defining feature of diabetes, requires active monitoring and treatment to prevent significant morbidity and mortality. Current technologies for intermittent and continuous glucose measurement are invasive.

View Article and Find Full Text PDF

Background: While previous reports characterised global and regional variations in RSV seasonality, less is known about local variations in RSV seasonal characteristics. This study aimed to understand the local-level variations in RSV seasonality and to explore the role of geographical, meteorological, and socio-demographic factors in explaining these variations.

Methods: We conducted a systematic literature review to identify published studies reporting data on local-level RSV season onset, offset, or duration for at least two local sites.

View Article and Find Full Text PDF

Reproducibility of peak force for isometric and isokinetic multi-joint leg extension exercise.

BMC Sports Sci Med Rehabil

January 2025

Training and Sports Sciences, University of Applied Sciences Wiener Neustadt, Johannes Gutenberg-Straße 3, Wiener Neustadt, 2700, Austria.

Background: Isokinetic dynamometry is a common tool for evaluating muscle function and is used across various disciplines. Technical advancements have shifted focus towards multi-joint exercises such as the leg press, offering insights into practical human movement dynamics. However, previous reproducibility studies have focused predominantly on single-joint exercises, warranting investigations into the reliability of multi-joint exercises.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!