Retinoic acid (RA) arrests the growth of EBV-immortalized lymphoblastoid B cell lines (LCLs) by upregulating the cyclin-dependent kinase inhibitor p27Kip1. Here, we show that in LCLs, RA inhibits ubiquitination and proteasome-dependent degradation of p27Kip1, a phenomenon that is associated with downregulation of Thr187 phosphorylation of the protein, whereas the phosphorylation on Ser10 is unaffected. Furthermore, we demonstrate that RA downregulates the expression of the p45Skp2 and Cks1 proteins, two essential components of the SCF(Skp2) ubiquitin ligase complex that target p27Kip1 for degradation. Downregulation of p45Skp2)and Cks1 occurs before the onset of growth arrest and is due to enhanced proteasome-mediated proteolysis of these proteins. Moreover, overexpression of p45Skp2 in DG75 cells prevents p27Kip1 protein accumulation and promotes resistance to the antiproliferative effects of RA. Treatment with Leptomycin B (LMB) blocked the translocation of p27Kip1 to the cytoplasm and prevented its degradation, indicating that CRM1-dependent nuclear export is required for p27Kip1 degradation. The shuttle protein p38Jab1, however, does not accumulate in the nucleus upon LMB treatment, nor does it interact with p27Kip1. Conversely, p45Skp2 is associated with p27Kip1 both in the nucleus and in the cytoplasm, accumulating within the nuclei after exposure to LMB and co-localizing with the exportin CRM1, suggesting a possible involvement of p45Skp2 in CRM1-dependent nuclear export of p27Kip1. These results indicate that downregulation of p45Skp2 is a key element underlying RA-induced p27Kip1 stabilization in B cells, resulting in an impaired targeting of the protein to the ubiquitin-proteasome pathway and probably contributing to the nuclear accumulation of p27Kip1.

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.onc.1208458DOI Listing

Publication Analysis

Top Keywords

p27kip1
12
retinoic acid
8
ebv-immortalized lymphoblastoid
8
lymphoblastoid cell
8
cell lines
8
proteasome-dependent degradation
8
p45skp2 cks1
8
cks1 proteins
8
p27kip1 degradation
8
crm1-dependent nuclear
8

Similar Publications

3,6-Anhydro-L-galactose suppresses mouse lymphocyte proliferation by attenuating JAK-STAT growth factor signal transduction and G-S cell cycle progression.

Int Immunopharmacol

January 2025

AT-31 BIO Inc., 403 Business Incubation Center, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea; Laboratory of Immunobiology, School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea. Electronic address:

Recombinant GH16B β-agarase-catalyzed liquefaction of 5-7 %(w/v) melted agarose at 50 °C completely hydrolyzed agarose into neoagarohexaose (NA6) and neoagarotetraose (NA4). Subsequent saccharification by recombinant GH50A β-agarase or recombinant GH50A β-agarase/recombinant GH117A α-neoagarobiose hydrolase at 35 °C converted NA6/NA4 into neoagarobiose (NA2) or 3,6-anhydro-L-galactose (L-AHG)/D-galactose, respectively. Purification of NA6/NA4 and NA2 was achieved by Sephadex G-15 column chromatography, while L-AHG was purified by Sephadex G-10, achieving ≥ 98 % purity.

View Article and Find Full Text PDF

Background: Prostate cancer (PCa) is a public health problem mostly reported in developed countries. The androgen receptor (AR) regulates the development and physiological function of normal prostate as well as the proliferation of cancerous prostate tissue. Treatment with supraphysiological androgen levels (SAL) is used in bipolar androgen therapy and inhibits PCa growth, suggesting SAL induces a tumor suppressive program.

View Article and Find Full Text PDF

Melanoma is an aggressive cancer characterized by rapid growth, early metastasis, and poor prognosis, with resistance to current therapies being a significant issue. BRAF mutations drive uncontrolled cell division by activating the MAPK pathway. In this study, A375 and FO-1, BRAF-mutated melanoma cell lines, were treated for 4-5 months with RAF inhibitor dabrafenib or AZ628, leading to drug resistance over time.

View Article and Find Full Text PDF

Background: Protein kinase CK2 is a highly conserved enzyme implicated in the pathogenesis of various human illnesses including obesity. Despite compelling evidence for the involvement of this kinase in the pathophysiology of obesity, the molecular mechanisms by which CK2 might regulate fat metabolism are still poorly understood.

Methods And Results: In this study, we aimed to elucidate the role of CK2 on lipid metabolism by employing both in vitro and in vivo approaches using mouse pre-adipocytes and a mouse model of diet-induced obesity.

View Article and Find Full Text PDF

Beyond the essential role of p27 and cyclin D2 in cell cycle progression, they are also shown to confer an anti-apoptotic function in peripheral blood (PB) lymphocytes. Although the aberrant longevity and expression of p27 and cyclin D2 in leukemic cells is well documented, the exact mechanisms responsible for this phenomenon have yet to be elucidated. This study was undertaken to determine the associations between polymorphisms in the and genes (encoding p27 and cyclin D2, respectively) and susceptibility to chronic lymphocytic leukemia (CLL), as well as their influence on the expression of both cell cycle regulators in PB leukemic B cells and non-malignant T cells from untreated CLL patients divided according to the genetic determinants studied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!