AI Article Synopsis

  • Acute promyelocytic leukemia (APL) is a specific type of leukemia where leukemia cells fail to mature properly, and treatment with all-trans retinoic acid (RA) can lead to remission by promoting cell differentiation.
  • The PML/RAR fusion protein plays a crucial role in APL's development and its response to RA, with gene expression analysis identifying over 1000 genes that are influenced by RA treatment.
  • Early regulation of genes related to differentiation and chromatin structure highlights the complexity of how RA influences leukemia cells, suggesting that specific transcription factors might help determine the treatment's effectiveness.

Article Abstract

Acute promyelocytic leukemia (APL) is a distinct subtype of acute myeloid leukemia characterized by a block of differentiation at the promyelocytic stage. APL patients respond to pharmacological concentrations of all-trans retinoic acid (RA) and disease remission correlates with terminal differentiation of leukemic blasts. The PML/RAR oncogenic transcription factor is responsible for both the pathogenesis of APL and for its sensitivity to RA. In order to identify physiological targets of RA therapy, we analysed gene expression profiles of RA-treated APL blasts and found 1056 common target genes. Comparing these results to those obtained in RA-treated U937 cell lines revealed that transcriptional response to RA is largely dependent on the expression of PML/RAR. Several genes involved in the control of differentiation and stem cell renewal are early targets of RA regulation, and may be important effectors of RA response. Modulation of chromatin modifying genes was also observed, suggesting that specific structural changes in local chromatin domains may be required to promote RA-mediated differentiation. Computational analysis of upstream genomic regions in RA target genes revealed nonrandom distribution of transcription factor binding sites, indicating that specific transcriptional regulatory complexes may be involved in determining RA response.

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.onc.1208498DOI Listing

Publication Analysis

Top Keywords

retinoic acid
8
acute promyelocytic
8
promyelocytic leukemia
8
transcription factor
8
target genes
8
molecular signature
4
signature retinoic
4
acid treatment
4
treatment acute
4
leukemia acute
4

Similar Publications

Background: Immunoglobulin A nephropathy (IgAN) and lupus nephritis (LN) are the most prevalent primary and secondary glomerular diseases, respectively, with several similarities in clinical presentations. Common pathogenic mechanisms in IgAN and LN have been well investigated by previous studies. However, the manifestation mechanism of these two independent diseases carrying distinct immunofluorescent pathological features is still unknown considering the similarities between them.

View Article and Find Full Text PDF

Retinoic acid signaling pathway plays a role in regulating vertebrate development, cell differentiation, and homeostasis. As a key enzyme that catalyzes the oxidation of retinal to retinoic acid, aldehyde dehydrogenase 1 family member A2 (Aldh1a2) is involved in cardiac development, while whether it functions in heart diseases remains to be studied. In this study, we infected primary cardiomyocytes with adenovirus overexpressing (Ad-Aldh1a2) to explore the effects of overexpression on the biological function of cardiomyocytes.

View Article and Find Full Text PDF

Functional genomics of primary congenital glaucoma by pathway analysis and functional characterization of CYP1B1 mutations.

Vision Res

December 2024

Medical Biotechnology Laboratory, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India. Electronic address:

CYP1B1 is the most common gene implicated in primary congenital glaucoma (PCG) - the most common form of childhood glaucoma. How CYP1B1 mutations cause PCG is not known. Understanding the mechanism of PCG caused by CYP1B1 mutations is crucial for disease management, therapeutics development, and potential prevention.

View Article and Find Full Text PDF

Cardiac development is a complex and intricate process involving numerous molecular signals and pathways. Researchers have explored cardiac development through a long journey, starting with early studies observing morphological changes and progressing to the exploration of molecular mechanisms using various molecular biology methods. Currently, advancements in stem cell technology and sequencing technology, such as the generation of human pluripotent stem cells and cardiac organoids, multi-omics sequencing, and artificial intelligence (AI) technology, have enabled researchers to understand the molecular mechanisms of cardiac development better.

View Article and Find Full Text PDF

Aims: Acute promyelocytic leukemia (APL) progresses quickly and often leads to early hemorrhagic death. Treatment with all-trans retinoic acid (ATRA) promotes differentiation of APL cells and clinical remission, making APL a potentially curable malignancy. Understanding how ATRA works may lead to new treatments for other types of leukemia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!