Purpose: To describe the clinical features and genetic analysis of a family with an autosomal dominant cone dystrophy (adCD).

Methods: Selected members of a family with an autosomal dominant cone dystrophy underwent ophthalmic evaluation. Blood samples were obtained, genomic DNA was isolated, and genomic fragments were amplified by PCR. Linkage to locus D6S1017 was established. DHPLC mutational analysis and direct sequencing were used to identify a mutation in GUCA1A, the gene encoding the guanylate cyclase activating protein 1 (GCAP1).

Results: Of 24 individuals who are at risk of the disease in a five generation family, 11 members were affected. Clinical presentations included photophobia, color vision defects, central acuity loss, and legal blindness with advanced age. The disease phenotype was observed in the second and third decades of life and segregated in an autosomal dominant fashion. An electroretinogram performed on one proband revealed profoundly subnormal and prolonged photopic and flicker responses, but preserved scotopic ERGs, consistent with a cone dystrophy. Mutational analysis and direct sequencing revealed a C451T transition in GUCA1A, corresponding to a novel L151F mutation in GCAP1. Like the E155G mutation, this mutation occurs in the EF4 hand domain, a region of GCAP1 critical in conferring calcium sensitivity to the protein. The leucine at this position is highly conserved among vertebrate guanylate cyclase activating proteins.

Conclusions: A novel L151F missense mutation in the EF4 high affinity Ca2+ binding site of GCAP1 is linked to adCD in a large pedigree. The cone dystrophy in this family shares clinical and electrophysiologic characteristics with other previously described adCD caused by mutations in GUCA1A.

Download full-text PDF

Source

Publication Analysis

Top Keywords

cone dystrophy
20
autosomal dominant
16
dominant cone
12
mutation gcap1
8
family autosomal
8
mutational analysis
8
analysis direct
8
direct sequencing
8
guanylate cyclase
8
cyclase activating
8

Similar Publications

Retinitis Pigmentosa type 25 (RP25) is a form of inherited retinal dystrophy characterized by a progressive loss of rod photoreceptors, subsequent degeneration of cone photoreceptors, and eventually, the retinal pigment epithelium. Caused by mutations in the EYS gene, it is believed to be critical for the structural and functional integrity of the retina. Using a non-integrative RNA reprogramming method, we have generated human induced pluripotent stem cell (hiPSC) lines from RP25 patient and from carriers but asymptomatic daughters.

View Article and Find Full Text PDF

Syndromic Retinitis Pigmentosa.

Prog Retin Eye Res

December 2024

Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands; Department of Ophthalmology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands.

Retinitis pigmentosa (RP) is a progressive inherited retinal dystrophy, characterized by the degeneration of photoreceptors, presenting as a rod-cone dystrophy. Approximately 20-30% of patients with RP also exhibit extra-ocular manifestations in the context of a syndrome. This manuscript discusses the broad spectrum of syndromes associated with RP, pathogenic mechanisms, clinical manifestations, differential diagnoses, clinical management approaches, and future perspectives.

View Article and Find Full Text PDF

RORA-neurodevelopmental disorder: a unique triad of developmental disability, cerebellar anomalies, and myoclonic seizures.

Genet Med

December 2024

Genetics Department, Hospices Civils de Lyon, Lyon, France; Neuromyogene Institute, Pathology and Genetics of neuron and muscle, CNRS UMR 5261 INSERM U1315, University of Lyon - Université Claude Bernard Lyon 1, Lyon, France. Electronic address:

Article Synopsis
  • RORA is a gene linked to the development and function of the cerebellum, and this study explores the largest group of individuals with RORA-related neurodevelopmental disorders (RORA-NDD).
  • The study involved 40 participants with various pathogenic variants of RORA, revealing a range of clinical features including developmental and intellectual disabilities, as well as cerebellar symptoms that can vary in onset and severity.
  • Findings indicate that certain missense variants are associated with more severe cerebellar issues, and common elements of RORA-NDD include developmental disabilities, cerebellar symptoms, and different types of myoclonic epilepsy.
View Article and Find Full Text PDF

Purpose: Mutations affecting the CRB1 gene can result in a range of retinal phenotypes, including early onset severe retinal dystrophy/Leber congenital amaurosis (EOSRD/LCA), retinitis pigmentosa, cone-rod dystrophy (CORD), and macular dystrophy (MD). As research into treatment strategies advances towards clinical translation, there is a need to establish reliable outcome metrics. This study explores the contrast sensitivity function (CSF) across different spatial frequencies in individuals with CRB1-retinopathies using the child-friendly PopCSF test, an iPad-based "gamified" assessment.

View Article and Find Full Text PDF

Hydroxychloroquine retinopathy in a 23-year-old male.

Retin Cases Brief Rep

December 2024

Retinal Disorders and Ophthalmic Genetics Division, Stein Eye Institute, University of California Los Angeles, David Geffen School of Medicine at UCLA, Los Angeles, California, United States.

Purpose: To report a case of hydroxychloroquine (HCQ) retinopathy after long-term exposure in a 23-year-old male.

Methods: Multimodal imaging including fundus photography, fundus autofluorescence (FAF), spectral domain optical coherence tomography (SD-OCT), and en face OCT were performed, in addition to functional testing with full-field electroretinography (ERG) and Humphrey visual field (HVF).

Results: A 23-year-old man with a history of juvenile systemic lupus erythematosus and HCQ treatment for 13 years at a dosage of 200 mg/d (cumulative dose: 949 grams) presented to the retinal clinic (DS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!