The transcription factor myocyte-enhancer factor 2 (MEF2) has been shown to be required for the survival of different types of neurons. However, the death- or survival-inducing second messenger pathways that regulate MEF2 activity remain to be fully elucidated. Membrane depolarization by KCl induces neuronal survival that is dependent upon MEF2-mediated gene transactivation. Here we report that membrane depolarizationinduced activation of MEF2 requires the cAMP-protein kinase A (PKA) pathway. Inhibition of the activity of cAMP-PKA pathway attenuates membrane depolarization-induced activation of MEF2 activity and neuronal survival, whereas enhancing the activity of this pathway prevents KCl withdrawal-induced inhibition of MEF2 and neuronal apoptosis. Moreover, PKA directly phosphorylates MEF2 at Thr-20 in vitro to increase MEF2 DNA binding activity. A mutation of Thr-20 to Ala renders MEF2 resistant to PKA phosphorylation in vitro and reduces its DNA binding activity. Transfection of this T20A mutant blocks survival and induces apoptosis in cultured cortical and cerebellar granule neurons. This study identifies the transcription factor MEF2 as a target of cAMP-PKA pathway and demonstrates that PKA phosphorylation of MEF2 is a key step in modulating its DNA binding activity and ability to promote neuronal survival.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M501819200DOI Listing

Publication Analysis

Top Keywords

neuronal survival
16
dna binding
12
binding activity
12
mef2
10
activity
8
myocyte-enhancer factor
8
camp-protein kinase
8
transcription factor
8
factor mef2
8
mef2 activity
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!