The presence of succinylacetone in urine or blood or amniotic fluid is pathognomonic of an inherited metabolic disorder, named tyrosinemia type I. We developed a capillary electrophoretic method for the fast analysis of succinylacetone in urine samples. The separation was performed at reversed polarity mode using either a cationic surfactant as the buffer additive, or a capillary coated with a positively charged polyelectrolyte. Under these conditions, urine samples were directly injected to the capillary without any pretreatment step. The utility of the method was demonstrated by the identification of succinyacetone in urine from patients with hereditary tyrosinemia type I. For all patients, diagnostic peaks at the expected migration times were detected. The developed method is rapid, simple, inexpensive, and suitable for the determination of succinylacetone in clinical urine samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jchromb.2005.01.007 | DOI Listing |
J Pediatr Endocrinol Metab
January 2025
Department of Rare Diseases, Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul, Türkiye.
Objectives: Phenylketonuria (PKU) and tyrosinemia type 3 (HT3) are both rare autosomal recessive disorders of phenylalanine-tyrosine metabolism. PKU is caused by a deficiency in phenylalanine hydroxylase (PAH), leading to elevated phenylalanine (Phe) and reduced tyrosine (Tyr) levels. HT3, the rarest form of tyrosinemia, is due to a deficiency in 4-hydroxyphenylpyruvate dioxygenase (HPD).
View Article and Find Full Text PDFInt J Neonatal Screen
December 2024
Laboratory of Metabolic Diseases, Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, P.O. Box 30 001, 9700 RB Groningen, The Netherlands.
In The Netherlands, newborn screening (NBS) for tyrosinemia type 1 (TT1) uses dried blood spot (DBS) succinylacetone (SUAC) as a biomarker. However, high false-positive (FP) rates and a false-negative (FN) case show that the Dutch TT1 NBS protocol is suboptimal. In search of optimization options, we evaluated the protocols used by other NBS programs and their performance.
View Article and Find Full Text PDFJ Inherit Metab Dis
January 2025
Department of Medical Psychology, Hannover Medical School, Hannover, Germany.
Hepatorenal tyrosinaemia (HT1) is an autosomal recessive disorder of tyrosine degradation resulting in hepatic and renal dysfunction, neurological sequelae may occur in some patients. The use of nitisinone (NTBC) has revolutionised treatment and outcome of this disorder. NTBC has to be combined with a low protein diet.
View Article and Find Full Text PDFCell Biochem Funct
December 2024
Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
Tyrosinemia type 1 (TT1) is caused by fumarylacetoacetate hydrolase activity deficiency, resulting in tissue accumulation of upstream metabolites, including succinylacetone (SA), the pathognomonic compound of this disease. Since the pathogenesis of liver and kidney damage observed in the TT1-affected patients is practically unknown, this study assessed the effects of SA on important biomarkers of redox homeostasis in the liver and kidney of adolescent rats, as well as in hepatic (HepG2) and renal (HEK-293) cultured cells. SA significantly increased nitrate and nitrite levels and decreased the concentrations of reduced glutathione (GSH) in the liver and kidney, indicating induction of reactive nitrogen species (RNS) generation and disruption of antioxidant defenses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!