Chloroplast-derived vaccine antigens and other therapeutic proteins.

Vaccine

Department of Molecular Biology and Microbiology, University of Central Florida, Biomolecular Science, Bldg. #20, Room 336, Orlando, FL 32816-2364, USA.

Published: March 2005

The chloroplast genetic engineering offers a number of unique advantages including high level of transgene expression, multi-gene expression in single transformation event and transgene containment due to maternal inheritance. Hyper-expression of vaccine antigens or therapeutic proteins in transgenic chloroplasts (leaves) or chromoplasts (fruits/roots) facilitates efficient oral delivery. Ability of chloroplasts to correctly fold human blood proteins with proper disulfide bridges (human serum albumin or interferons) or presence of chaperones in chloroplasts to facilitate assembly of complex multi-subunit proteins or their prokaryotic nature to express native bacterial genes (up to 46.1% total leaf protein) are attractive features for therapeutic protein production. Purification of therapeutic proteins has been achieved using novel purification strategies that do not require expensive column chromatography.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vaccine.2004.11.004DOI Listing

Publication Analysis

Top Keywords

therapeutic proteins
12
vaccine antigens
8
antigens therapeutic
8
proteins
5
chloroplast-derived vaccine
4
therapeutic
4
proteins chloroplast
4
chloroplast genetic
4
genetic engineering
4
engineering offers
4

Similar Publications

Insect protein hydrolysates (PH) are emerging as valuable compounds with biological activity. The aim of the present study was to assess the potential cytoprotective effects of PH from the Black Soldier Fly (BPH, in the range 0.1-0.

View Article and Find Full Text PDF

The anti-tumor effect of the IFNγ/Fas chimera expressed on CT26 tumor cells.

Anim Cells Syst (Seoul)

January 2025

Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, Korea.

Interferon gamma (IFNγ) is well-known for its ability to stimulate immune cells in response to pathogen infections and cancer. To develop an effective cancer therapeutic vaccine, CT26 colon carcinoma cells were genetically modified to express IFNγ either as a secreted form (sIFNγ) or as a membrane-bound form. For the membrane-bound expression, IFNγ was fused with Fas (mbIFNγ/Fas), incorporating the extracellular cysteine-rich domains, transmembrane, and cytoplasmic domains of Fas.

View Article and Find Full Text PDF

Although peptide vaccines offer a novel venue for cancer immunotherapy, clinical success has been rather limited. Cell-penetrating peptides, due to their ability to translocate through the cell membrane, could be conjugated to the peptide vaccine to2 enhance therapeutic efficiency. The S4 transduction domain of the shaker-potassium channel was conjugated to mammaglobin-A (MamA) immunodominant epitope (MamA2.

View Article and Find Full Text PDF

Background: Proton pump inhibitors (PPIs) are one of the most used drugs worldwide. While generally considered safe, the usage of PPIs is associated with several adverse outcomes including acute infectious diseases. PPIs influence macrophage and neutrophil function although a systematic review has never been undertaken.

View Article and Find Full Text PDF

RNA nanotherapeutics for hepatocellular carcinoma treatment.

Theranostics

January 2025

Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.

Hepatocellular carcinoma (HCC) remains a leading cause of cancer-related mortality worldwide, particularly due to the limited effectiveness of current therapeutic options for advanced-stage disease. The efficacy of traditional treatments is often compromised by the intricate liver microenvironment and the inherent heterogeneity. RNA-based therapeutics offer a promising alternative, utilizing the innovative approach of targeting aberrant molecular pathways and modulating the tumor microenvironment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!