It is believed that oxidative stress (OS) plays an important role in the loss of dopaminergic nigrostriatal neurons in Parkinson's disease (PD) and that treatment with antioxidants might be neuroprotective. However, most currently available antioxidants cannot readily penetrate the blood brain barrier after systemic administration. We now report that AD4, the novel low molecular weight thiol antioxidant and the N-acytel cysteine (NAC) related compound, is capable of penetrating the brain and protects neurons in general and especially dopaminergic cells against various OS-generating neurotoxins in tissue cultures. Moreover, we found that treatment with AD4 markedly decreased the damage of dopaminergic neurons in three experimental models of PD. AD4 suppressed amphetamine-induced rotational behaviour in rats with unilateral 6-OHDA-induced nigral lesion. It attenuated the reduction in striatal dopamine levels in mice treated with 1-methyl-4-phenyl-1,2,3,6,-tetrahydropyridine (MPTP). It also reduced the dopaminergic neuronal loss following chronic intrajugular administration of rotenone in rats. Our findings suggest that AD4 is a novel potential new neuroprotective drug that might be effective at slowing down nigral neuronal degeneration and illness progression in patients with PD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1460-9568.2005.03889.x | DOI Listing |
PLoS One
January 2025
Departamento de Ingeniería en Alimentos, Laboratorio de Investigación en Ingeniería en Alimentos (LabInAli), Colegio de Ciencias e Ingenierías, Universidad San Francisco de Quito USFQ, Quito, Ecuador.
Obesity, a complex metabolic chronic illness, is commonly accompanied by an excessive production of free radicals, which influences the development of its comorbidities. Uric acid is commonly linked to pro-oxidant effects on human health. Though recent evidence suggests its potential antioxidant properties, it is possible that the increase in circulating uric acid levels is an adaptive protective response against the detrimental effects of excess free radicals and oxidative stress present in obese individuals.
View Article and Find Full Text PDFACS Environ Au
January 2025
Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada.
Haloacetonitriles (HANs) are a class of toxic drinking water disinfection byproducts (DBPs). However, the toxicity mechanisms of HANs remain unclear. We herein investigated the structure-related in vitro toxicity of 6 representative HANs by utilizing complementary bioanalytical approaches.
View Article and Find Full Text PDFInt J Med Mushrooms
January 2025
Department of Bioengineering, College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou 510640, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China.
Ganoderma resinaceum is a traditional mushroom that contains natural products, including ergothioneine (EGT), which has powerful antioxidant properties in the human body. To increase EGT yield from G. resinaceum, the optimal carbon and nitrogen sources in the culture medium were determined as 20 g/L sucrose and 4 g/L NH4Cl, respectively.
View Article and Find Full Text PDFJ Cosmet Dermatol
January 2025
Scientis SA, Geneva, Switzerland.
Background: Skin aging is inevitable. Wrinkles, skin texture abnormalities, senile hyperpigmentation, loss of skin tone, dryness, atrophy, and telangiectasias represent some of the hallmarks of aged skin. Skin rejuvenation can be addressed by topical therapies, such as topical retinoids and antioxidants or physical modalities with energy-based devices, all providing acceptable outcomes.
View Article and Find Full Text PDFNat Rev Chem
January 2025
Department of Chemistry & Biochemistry, University of California Santa Barbara, Santa Barbara, CA, USA.
Catechol-functionalized proteins in mussel holdfasts are essential for underwater adhesion and cohesion and have inspired countless synthetic polymeric materials and devices. However, as catechols are prone to oxidation, long-term performance and stability of these inventions awaits effective antioxidation strategies. In mussels, catechol-mediated interactions are stabilized by 'built-in' homeostatic redox reservoirs that restore catechols oxidized to quinones.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!