Control of iron(III) spin-state in the model complexes of azide hemoprotein by porphycene, corrphycene, and hemiporphycene macrocycles.

Inorg Chem

Department of Physical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Inage-Yayoi, Chiba 263-8522, Japan.

Published: March 2005

Spin states of the iron(III) complexes of porphyrin, porphycene, hemiporphycene, and corrphycene bearing both 1-methylimidazole and azide as axial ligands were analyzed with infrared (IR) spectroscopy at 20 degrees C. The IR stretching band of coordinating azide split into two peaks around 2047 and 2017 cm(-1) reflecting an equilibrium between the high- (S = 5/2) and low- (S = 1/2) spin states. The high-spin fraction changed over a 0-90% range among the macrocycles, demonstrating that the tetrapyrrole array is essential to control the equilibrium.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic048353cDOI Listing

Publication Analysis

Top Keywords

spin states
8
control ironiii
4
ironiii spin-state
4
spin-state model
4
model complexes
4
complexes azide
4
azide hemoprotein
4
hemoprotein porphycene
4
porphycene corrphycene
4
corrphycene hemiporphycene
4

Similar Publications

Symmetry-breaking spin-state transitions in two of three isostructural salts of MnIII spin-crossover cations, [MnIII(3-OMe-5-NO2-sal2323)]+, with heavy anions are reported. The ReO4-  salt undergoes two-step spin crossover which is coupled with a re-entrant symmetry-breaking structural phase transition between a high temperature phase (S = 2, C2/c), an intermediate ordered phase (S = 1/S = 2, P21/c), and a low temperature phase (S = 1, C2/c). The AsF6-  complex undergoes an abrupt transition between a high temperature phase (S = 2, C2/c) and a low temperature ordered phase (S = 1/S = 2, P-1).

View Article and Find Full Text PDF

High-level multireference configuration interaction plus Davidson correction (MRCI + Q) calculation method was employed to determine the potential energy curves (PECs) of 10 Λ-S states, which come from the first and second dissociation channels of the SbP molecule, as well as 34 Ω states considering the spin-orbit coupling (SOC) effect. By solving the Schrödinger equation for nuclear motion, spectroscopic constants for the ground state XΣ and low-lying excited states were obtained and compared with experimental data. The excellent agreement indicates the reliability of our calculations.

View Article and Find Full Text PDF

Lanthanide atoms show long magnetic lifetimes because of their strongly localized 4 electrons, but electrical control of their spins has been difficult because of their closed valence shell configurations. We achieved electron spin resonance of individual lanthanide atoms using a scanning tunneling microscope to probe the atoms bound to a protective insulating film. The atoms on this surface formed a singly charged cation state having an unpaired 6 electron, enabling tunnel current to access their 4 electrons.

View Article and Find Full Text PDF

This study investigates the impact of structural isomerism on the excited state lifetime and redox energetics of heteroleptic [Ir(ppy)2(bpy)]+ and homoleptic Ir(ppy)3 photoredox catalysts using ground-state and time-dependent density functional theory methods. While the ground- and excited-state reduction potentials differ only slightly among the isomers of these complexes, our findings reveal significant variations in the radiative and non-radiative decay rates of the reactivity-controlling triplet 3MLCT states of these closely related species. The observed differences in radiative decay rates could be traced back to variations in the transition dipole moment, vertical energy gaps, and spin-orbit coupling of the isomers.

View Article and Find Full Text PDF

In this work, Ge vacancies and doping with transition metals (Mn and Fe) are proposed to modulate the electronic and magnetic properties of GeP monolayers. A pristine GeP monolayer is a non-magnetic two-dimensional (2D) material, exhibiting indirect gap semiconductor behavior with an energy gap of 1.34(2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!