Download full-text PDF |
Source |
---|
Cell Death Dis
November 2024
Engelhardt Institute of Molecular Biology, RAS, Moscow, Russia.
Caspase-2 is a unique and conserved cysteine protease that is involved in several cellular processes, including different forms of cell death, maintenance of genomic stability, and the response to reactive oxygen species. Despite advances in caspase-2 research in recent years, the mechanisms underlying its activation remain largely unclear. Although caspase-2 is activated in the PIDDosome complex, its processing could occur even in the absence of PIDD1 and/or RAIDD, suggesting the existence of an alternative platform for caspase-2 activation.
View Article and Find Full Text PDFActa Biomater
January 2024
Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, PR China.
Immune cells distinguish cancer cells mainly relying on their membrane-membrane communication. The major challenge of cancer vaccines exists in difficult identification of cancer neoantigens and poor understanding over immune recognition mechanisms against cancer cells, particularly the combination among multiple antigens and the cooperation between antigens and immune-associated proteins. We exploit cancer cell membranes as the whole cancer antigen repertoire and reinforce its immunogenicity by cellular engineering to modulate the cytomembrane's immune-associated functions.
View Article and Find Full Text PDFJ Immunol
July 2021
Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China;
IFN-β promoter stimulator-1 (IPS-1)- and stimulator of IFN genes (STING)-mediated type I IFNs play a critical role in antiviral responses. Myxovirus resistance (Mx) proteins are pivotal components of the antiviral effectors induced by IFNs in many species. An unprecedented expansion of Mx genes has occurred in fish.
View Article and Find Full Text PDFCell Regen
September 2018
State Key Laboratory of Experimental Hematology, China.
Adult hematopoietic stem cells (HSCs) and progenitors (HPCs) reside in the bone marrow, a highly orchestrated architecture. In the bone marrow, the process of how HSCs exert self-renewal and differentiation is tightly regulated by the surrounding microenvironment, or niche. Recent advances in imaging technologies and numerous knockout or knockin mouse models have greatly improved our understanding of the organization of the bone marrow niche.
View Article and Find Full Text PDFFront Microbiol
November 2015
Centre for Bacterial Cell Biology, Medical School, Newcastle University Newcastle upon Tyne, UK ; Interdisciplinary Computing and Complex BioSystems (ICOS) Research Group, School of Computing Science, Newcastle University Newcastle upon Tyne, UK.
Bacterial cells sense their population density and respond accordingly by producing various signal molecules to the surrounding environments thereby trigger a plethora of gene expression. This regulatory pathway is termed quorum sensing (QS). Plenty of bacterial virulence factors are controlled by QS or QS-mediated regulatory systems and QS signal molecules (QSSMs) play crucial roles in bacterial signaling transduction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!