A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Precision constrained stochastic resonance in a feedforward neural network. | LitMetric

Precision constrained stochastic resonance in a feedforward neural network.

IEEE Trans Neural Netw

Department of Computing Science, University of Stirling, Stirling FK9 4LA, UK.

Published: January 2005

Stochastic resonance (SR) is a phenomenon in which the response of a nonlinear system to a subthreshold information-bearing signal is optimized by the presence of noise. By considering a nonlinear system (network of leaky integrate-and-fire (LIF) neurons) that captures the functional dynamics of neuronal firing, we demonstrate that sensory neurons could, in principle harness SR to optimize the detection and transmission of weak stimuli. We have previously characterized this effect by use of signal-to-noise ratio (SNR). Here in addition to SNR, we apply an entropy-based measure (Fisher information) and compare the two measures of quantifying SR. We also discuss the performance of these two SR measures in a full precision floating point model simulated in Java and in a precision limited integer model simulated on a field programmable gate array (FPGA). We report in this study that stochastic resonance which is mainly associated with floating point implementations is possible in both a single LIF neuron and a network of LIF neurons implemented on lower resolution integer based digital hardware. We also report that such a network can improve the SNR and Fisher information of the output over a single LIF neuron.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNN.2004.836195DOI Listing

Publication Analysis

Top Keywords

stochastic resonance
12
nonlinear system
8
lif neurons
8
floating point
8
model simulated
8
single lif
8
lif neuron
8
precision constrained
4
constrained stochastic
4
resonance feedforward
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!