This paper proposes a new method to model partially connected feedforward neural networks (PCFNNs) from the identified input type (IT) which refers to whether each input is coupled with or uncoupled from other inputs in generating output. The identification is done by analyzing input sensitivity changes as amplifying the magnitude of inputs. The sensitivity changes of the uncoupled inputs are not correlated with the variation on any other input, while those of the coupled inputs are correlated with the variation on any one of the coupled inputs. According to the identified ITs, a PCFNN can be structured. Each uncoupled input does not share the neurons in the hidden layer with other inputs in order to contribute to output in an independent manner, while the coupled inputs share the neurons with one another. After deriving the mathematical input sensitivity analysis for each IT, several experiments, as well as a real example (blood pressure (BP) estimation), are described to demonstrate how well our method works.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TNN.2004.839353 | DOI Listing |
Phys Rev Lett
December 2024
Karlsruhe Institute of Technology, IQMT, 76131 Karlsruhe, Germany.
Josephson junction parametric amplifiers have become essential tools for microwave quantum circuit readout with minimal added noise. Even after improving at an impressive rate in the past decade, they remain vulnerable to magnetic fields, which limits their use in many applications such as spin qubits, Andreev and molecular magnet devices, dark matter searches, etc. Kinetic inductance materials, such as granular aluminum (grAl), offer an alternative source of nonlinearity with innate magnetic field resilience.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
State Key Laboratory of Particle Detection and Electronics, Beijing 100049, Hefei 230026, People's Republic of China.
Using the e^{+}e^{-} collision data collected with the BESIII detector operating at the BEPCII collider, at center-of-mass energies from the threshold to 4.95 GeV, we present precise measurements of the cross section for the process e^{+}e^{-}→D_{s}^{+}D_{s}^{-} using a single-tag method. The resulting cross section line shape exhibits several new structures, thereby offering an input for a future coupled-channel analysis and model tests, which are critical to understand vector charmonium-like states with masses between 4 and 5 GeV.
View Article and Find Full Text PDFWaveguide coupling design is one of the most challenging topics in augmented reality (AR) near-eye displays (NED). The primary challenge stems from the necessity to simultaneously address two competing factors: the overall volume of the AR system and the occurrence of chromatic aberration. To address this issue, what we believe to be a novel tandem trilayer achromatic metasurface is specifically designed for waveguide coupling in AR NEDs, capable of achieving an achromatic effect in a nanometer-thin layer.
View Article and Find Full Text PDFJ Acoust Soc Am
January 2025
University of Twente, Faculty of Engineering Technology, Applied Mechanics and Data Analysis, Drienerlolaan 5, 7522 NG Enschede, The Netherlands.
A solution method to improve an anechoic chamber at low frequencies with the use of active noise control is presented. The approach uses the Kirchhoff-Helmholtz integral to compute the reflected sound field resulting from the primary sources together with an algorithm to compute the filter coefficients of a controller driving secondary sources on the walls of the enclosure using reference signals as inputs, which are measured on a contour enclosing the primary sources. A causal frequency domain method with conjugate gradient iterations is derived to determine the controller.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physics, College of Science, University of Thi-Qar, Nasiriya, Iraq.
This work studies the generation of the orbital angular momentum (OAM) beam in the double quantum dot-metal nanoparticle (DQD-MNP) system under the application of the OAM beam. First, an analytical model is derived to attain the relations of probe and generated fields as a distance function in the DQD-MNP system under OAM applied field and spontaneously generated coherence (SGC) components. The calculation here is of material property; it differs from others by calculating energy states of the DQDs and the computation of the transition momenta between quantum dot (QD)-QD and QD-wetting layer (WL) transitions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!