Objective: A potential role of growth arrest-specific gene 6 (Gas-6) in energy storage in adipose tissue was investigated in murine models of obesity. Gas-6 is a ligand for the Axl, C-Mer, and Sky family of tyrosine kinase receptors.

Methods And Results: Whereas Gas-6, C-Mer, and Sky were expressed in mature murine adipocytes, the expression of Axl was restricted to the stromal-vascular fraction, which includes pre-adipocytes. During the in vitro conversion of adipogenic 3T3-F442A cells into mature adipocytes, the expression of Gas-6 increased in undifferentiated confluent pre-adipocytes during a transient phase of growth arrest. On treatment of these cells with an adipogenic medium, Gas-6 expression decreased sharply, coinciding with expression of early adipocytes markers. This modulation was not observed in the nonadipogenic 3T3-C2 cells. The Gas-6 mRNA level was transiently downregulated during nutritionally induced expansion of adipose tissues in vivo. When kept on a standard diet, no significant difference in either total body weight or weight of gonadal or subcutaneous fat pads was observed between Gas-6 deficient and wild-type mice. On exposure to a high-fat diet, however, Gas-6-deficient mice had significantly less fat mass than their wild-type counterparts.

Conclusions: Gas-6 enhances the accumulation of adipose tissue in diet-induced obese mice.

Download full-text PDF

Source
http://dx.doi.org/10.1161/01.ATV.0000160611.68791.c6DOI Listing

Publication Analysis

Top Keywords

adipose tissue
12
nutritionally induced
8
gas-6
8
c-mer sky
8
adipocytes expression
8
role gas-6
4
gas-6 adipogenesis
4
adipogenesis nutritionally
4
adipose
4
induced adipose
4

Similar Publications

Obesity causes an imbalance in the expression and secretion of several organokines, which in turn contributes to the development of metabolic disorders such as type 2 diabetes mellitus. Organokines are produced by corresponding organs and affect systemic metabolic homeostasis. Diverse organokines play a crucial role in the communication between adipose tissue, skeletal muscle and other organs.

View Article and Find Full Text PDF

Polyunsaturated fatty acids (PUFAs) including omega-3 and omega-6 are obtained from diet and can be measured objectively in plasma or red blood cells (RBCs) membrane biomarkers, representing different dietary exposure windows. In vivo conversion of omega-3 and omega-6 PUFAs from short- to long-chain counterparts occurs via a shared metabolic pathway involving fatty acid desaturases and elongase. This analysis leveraged genome-wide association study (GWAS) summary statistics for RBC and plasma PUFAs, along with expression quantitative trait loci (eQTL) to estimate tissue-specific genetically predicted gene expression effects for delta-5 desaturase (FADS1), delta-6 desaturase (FADS2), and elongase (ELOVL2) on changes in RBC and plasma biomarkers.

View Article and Find Full Text PDF

Metformin is the first-line pharmacotherapy for type 2 diabetes mellitus; however, many patients respond poorly to this drug in clinical practice. The potential involvement of microbiota-mediated intestinal immunity and related signals in metformin responsiveness has not been previously investigated. In this study, we successfully constructed a humanized mouse model by fecal transplantation of the gut microbiota from clinical metformin-treated - responders and non-responders, and reproduced the difference in clinical phenotypes of responsiveness to metformin.

View Article and Find Full Text PDF

Mice with genetic ablation of PI3Kγ are protected from diet-induced obesity. However, the cell type responsible for PI3Kγ action in obesity remains unknown. We generated mice with conditional deletion of PI3Kγ in neurons using the nestin promoter to drive the expression of the Cre recombinase (PI3Kγ mice) and investigated their metabolic phenotype in a model of diet-induced obesity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!