Identification of hypertension-related genes through an integrated genomic-transcriptomic approach.

Circ Res

Israel Rat Genome Center and Laboratory for Molecular Medicine, Department of Nephrology and Hypertension, Faculty of Health Sciences, Barzilai Medical Center Campus of the Ben-Gurion University, Ashkelon, Israel.

Published: April 2005

In search for the genetic basis of hypertension, we applied an integrated genomic-transcriptomic approach to identify genes involved in the pathogenesis of hypertension in the Sabra rat model of salt-susceptibility. In the genomic arm of the project, we previously detected in male rats two salt-susceptibility QTLs on chromosome 1, SS1a (D1Mgh2-D1Mit11; span 43.1 cM) and SS1b (D1Mit11-D1Mit4; span 18 cM). In the transcriptomic arm, we studied differential gene expression in kidneys of SBH/y and SBN/y rats that had been fed regular diet or salt-loaded. We used the Affymetrix Rat Genome RAE230 GeneChip and probed >30,000 transcripts. The research algorithm called for an initial genome-wide screen for differentially expressed transcripts between the study groups. This step was followed by cluster analysis based on 2x2 ANOVA to identify transcripts that were of relevance specifically to salt-sensitivity and hypertension and to salt-resistance. The two arms of the project were integrated by identifying those differentially expressed transcripts that showed an allele-specific hypertensive effect on salt-loading and that mapped within the defined boundaries of the salt-susceptibility QTLs on chromosome 1. The differentially expressed transcripts were confirmed by RT-PCR. Of the 2933 genes annotated to rat chromosome 1, 1102 genes were identified within the boundaries of the two blood pressure QTLs. The microarray identified 2470 transcripts that were differentially expressed between the study groups. Cluster analysis identified genome-wide 192 genes that were relevant to salt-susceptibility and/or hypertension, 19 of which mapped to chromosome 1. Eight of these genes mapped within the boundaries of QTLs SS1a and SS1b. RT-PCR confirmed 7 genes, leaving TcTex1, Myadm, Lisch7, Axl-like, Fah, PRC1-like, and Serpinh1. None of these genes has been implicated in hypertension before. These genes become henceforth targets for our continuing search for the genetic basis of hypertension.

Download full-text PDF

Source
http://dx.doi.org/10.1161/01.RES.0000160556.52369.61DOI Listing

Publication Analysis

Top Keywords

differentially expressed
16
expressed transcripts
12
genes
9
integrated genomic-transcriptomic
8
genomic-transcriptomic approach
8
search genetic
8
genetic basis
8
basis hypertension
8
salt-susceptibility qtls
8
qtls chromosome
8

Similar Publications

Background: The emerging incidence of pathogenic liver conditions is turning into a major concern for global health. Induction of pyroptosis in hepatocytes instigates cellular disintegration, which in turn liberates substantial quantities of pro-inflammatory intracellular substances, thereby accelerating the advancement of liver fibrosis. Consequently, directing therapeutic efforts towards inhibiting pyroptosis could potentially serve as an innovative approach in managing inflammation related chronic hepatic disorders.

View Article and Find Full Text PDF

Background: Batoids possess a unique body plan associated with a benthic lifestyle that includes dorsoventral compression and anteriorly expanded pectoral fins that fuse to the rostrum. The family Myliobatidae, including manta rays and their relatives, exhibit further modifications associated with invasion of the pelagic environment, and the evolution of underwater flight. Notably, the pectoral fins are split into two domains with independent functions that are optimized for feeding and oscillatory locomotion.

View Article and Find Full Text PDF

PEDV is a highly contagious enteric pathogen that can cause severe diarrhea and death in neonatal pigs. Despite extensive research, the molecular mechanisms of host's response to PEDV infection remain unclear. In this study, differentially expressed genes (DEGs), time-specific coexpression modules, and key regulatory genes associated with PEDV infection were identified.

View Article and Find Full Text PDF

Gene expression profiling for the diagnosis of male breast cancer.

BMC Cancer

December 2024

Department of Pathology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.

Background: Male breast cancer (MBC) is a rare malignancy, but its global incidence has shown a notable increase in recent decades. Factors such as limited health literacy, inadequate health education, and reluctance to seek medical attention contribute to the late-stage diagnosis of most MBC patients. Consequently, there is an urgent need for a highly specific and sensitive diagnostic approach to MBC.

View Article and Find Full Text PDF

Comparative transcriptome analysis and heterologous overexpression indicate that the ZjZOG gene may positively regulate the size of jujube fruit.

BMC Plant Biol

December 2024

Henan Province Key Laboratory of Germplasm Innovation and Utilization of Eco- economic Woody Plant, Pingdingshan University, Pingdingshan, Henan, 467000, China.

Background: Fruit size is a crucial economic trait that impacts the quality of jujube (Ziziphus jujuba), however, research in this area remains limited. This study utilized two jujube cultivars with similar genetic backgrounds but differing fruit sizes to investigate the regulatory mechanisms affecting fruit size through cytological observations, transcriptome sequencing, and heterologous overexpression.

Results: The findings reveal that variations in mesocarp cell numbers during early fruit development significantly influence final fruit size.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!