Neuregulin-1 (NRG-1), binding to the human epidermal growth factor receptor HER2/HER3, plays a role in pulmonary epithelial cell proliferation and recovery from injury in vitro. We hypothesized that activation of HER2/HER3 by NRG-1 would also play a role in recovery from in vivo lung injury. We tested this hypothesis using bleomycin lung injury of transgenic mice incapable of signaling through HER2/HER3 due to lung-specific dominant-negative HER3 (DNHER3) expression. In animals expressing DNHER3, protein leak, cell infiltration, and NRG-1 levels in bronchoalveolar lavage fluid increased after injury, similar to that in nontransgenic littermate control animals. However, HER2/HER3 was not activated, and DNHER3 animals displayed fewer lung morphological changes at 10 and 21 days after injury (P = 0.01). In addition, they contained 51% less collagen in injured lungs (P = 0.04). Transforming growth factor-beta1 did not increase in bronchoalveolar lavage fluid from DNHER3 mice compared with nontransgenic littermate mice (P = 0.001), suggesting that a mechanism for the decreased fibrosis was lack of transforming growth factor-beta1 induction in DNHER3 mice. Severe lung injury (0.08 units bleomycin) resulted in 80% mortality of nontransgenic mice, but only 35% mortality of DNHER3 transgenic mice (P = 0.04). Thus inhibition of HER2/HER3 signaling protects against pulmonary fibrosis and improves survival.

Download full-text PDF

Source
http://dx.doi.org/10.1152/japplphysiol.01360.2004DOI Listing

Publication Analysis

Top Keywords

lung injury
12
human epidermal
8
fibrosis improves
8
improves survival
8
transgenic mice
8
bronchoalveolar lavage
8
lavage fluid
8
nontransgenic littermate
8
transforming growth
8
growth factor-beta1
8

Similar Publications

Background: The hypobaric hypoxic atmosphere can cause adverse reactions or sickness. The purpose of this study was to explore the preventive effect and mechanism of human umbilical cord mesenchymal stem cells (hUC-MSCs) on acute pathological injury in mice exposed to high-altitude.

Methods: We pretreated C57BL/6 mice with hUC-MSCs via the tail vein injection, and then the mice were subjected to hypobaric hypoxic conditions for five days.

View Article and Find Full Text PDF

Background: Marathon training and running have many beneficial effects on human health and physical fitness; however, they also pose risks. To date, no comprehensive review regarding both the benefits and risks of marathon running on different organ systems has been published.

Main Body: The aim of this review was to provide a comprehensive review of the benefits and risks of marathon training and racing on different organ systems.

View Article and Find Full Text PDF

The anti-inflammatory role of miR-23b-3p (miR-23b) is known in autoimmune diseases like multiple sclerosis, systemic lupus erythematosus, and rheumatoid arthritis. However, its role in sepsis-related acute lung injury (ALI) and its effect on macrophages in ALI remain unexplored. This investigation aimed to evaluate miR-23b's therapeutic potential in macrophages in the context of ALI.

View Article and Find Full Text PDF

Hexahistidine-metal assembly encapsulated fibroblast growth factor 21 for lipopolysaccharide-induced acute lung injury.

Eur J Pharm Biopharm

January 2025

Intervention Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China. Electronic address:

Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) represents a spectrum of potentially fatal conditions that currently lack effective drug treatment. Recent researches suggest that Fibroblast Growth Factor 21 (FGF21) may protect against ALI/ARDS. However, the clinical use of FGF21 is limited by its rapid degradation, restricted targeting capabilities, and numerous adverse effects.

View Article and Find Full Text PDF

In injured and diseased tissues, changes in molecular and cellular compositions, as well as tissue architecture, lead to alterations in both physiological and physical characteristics. Notably, the electrical properties of tissues, which can be characterized as bioelectrical impedance (bioimpedance), are closely linked to the health and pathological conditions of the tissues. This highlights the significant role of quantitatively characterizing these electrical properties in improving the accuracy and speed of diagnosis and prognosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!