Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Uncontrolled proliferation of vascular smooth muscle cells (VSMCs) contribute to intimal hyperplasia during atherosclerosis and restenosis. Heparin is an antiproliferative agent for VSMCs and has been shown to block VSMC proliferation both in tissue culture systems and in animals. Despite the well documented antiproliferative actions of heparin, its cellular targets largely remain unknown. In an effort to characterize the mechanism of the antiproliferative property of heparin, we have analyzed the effect of heparin on cell cycle in VSMC. Our results indicate that the heparin-induced block in G(1) to S phase transition is imposed by p27(kip1)-mediated inhibition of cyclin-dependent kinase 2 activity. Further analysis of p27(kip1) mRNA levels showed that the increase in p27(kip1) protein levels in heparin-treated VSMC occurs at posttranscriptional levels. We present evidence that heparin causes stabilization of p27(kip1) protein during G(1) phase and thereby prevents activation of cyclin-dependent kinase 2.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3972062 | PMC |
http://dx.doi.org/10.1074/jbc.M411458200 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!