Global changes in gene expression and exit from the cell cycle underlie differentiation. Therefore, understanding chromatin behavior in differentiating nuclei and late G1 is key to understanding this developmental event. A nuclear event that has been shown to specifically occur in late G1 is the association of two heterochromatic blocks in Drosophila. The brown(Dominant) (bw(D)) chromosome of Drosophila melanogaster contains a large block of heterochromatin near the end of 2R. This distal block associates with centric heterochromatin (2Rh), but not until at least 5 hours into G1. We used the bw(D) allele as a model for nuclear organization to determine whether its association with the heterochromatic compartment of the second chromosomes (2Rh) strictly requires differentiation or if this change is a stochastic event, its occurrence being proportional to time spent in G1/G0 phase of the cell cycle. Fluorescence in situ hybridization on eye imaginal discs showed increased association between the bw locus and 2Rh in differentiated cells. Interestingly, an increase in the number of nuclei showing bw(D)-2Rh association in the brains of developmentally delayed larvae that were compromised for differentiation was also observed. Live fluorescence imaging showed that the kinetics of chromatin movement remains unchanged in the developmentally arrested nuclei. These observations suggest that nuclear reorganization is not directly controlled by specific inductive signals during differentiation and that this nuclear reorganization can happen in a cell, regardless of differentiation state, that is arrested in the appropriate cell cycle stage. However, we did see changes that appear to be more directly correlated with differentiation. Dynamic imaging in eye imaginal discs showed that the movement of chromatin is more constrained in differentiated cells, implying that confinement of loci to a smaller nuclear space may help to maintain the changed organization and the transcription profile that accompanies differentiation.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jcs.01684DOI Listing

Publication Analysis

Top Keywords

cell cycle
12
nuclear organization
8
differentiation
8
association heterochromatic
8
eye imaginal
8
imaginal discs
8
differentiated cells
8
nuclear reorganization
8
nuclear
6
changing chromatin
4

Similar Publications

Background: Dysbiosis of the lung microbiome can contribute to the initiation and progression of lung cancer. Synchronous multiple primary lung cancer (sMPLC) is an increasingly recognized subtype of lung cancer characterized by high morbidity, difficulties in early detection, poor prognosis, and substantial clinical challenges. However, the relationship between sMPLC pathogenesis and changes in the lung microbiome remains unclear.

View Article and Find Full Text PDF

Identification of crucial pathways and genes linked to endoplasmic reticulum stress in PCOS through combined bioinformatic analysis.

Front Mol Biosci

January 2025

Department of Obstetrics and Gynecology, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China.

Background: Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic condition impacting millions of women worldwide. This study sought to identify granulosa cell endoplasmic reticulum stress (GCERS)-related differentially expressed genes (DEGs) between women with PCOS and those without PCOS using bioinformatics and to investigate the related molecular mechanisms.

Methods: Two datasets were downloaded from GEO and analysed using the limma package to identify DEGs in two groups-PCOS and normal granulosa cells.

View Article and Find Full Text PDF

Background And Aim: L. has been used medicinally and traditionally since antiquity. This study sought to examine the ethanolic extract (ASEE) in inducing apoptosis in human triple-negative breast cancer (TNBC) MDA-MB-231 cells and the molecular interactions of the identified components with cell death markers using method.

View Article and Find Full Text PDF

Cannabidiol suppresses proliferation and induces cell death, autophagy and senescence in human cholangiocarcinoma cells via the PI3K/AKT/mTOR pathway.

J Tradit Complement Med

November 2024

Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.

Background And Aim: Cholangiocarcinoma (CCA) is usually diagnosed at a late stage, leading to treatment failure. Cannabidiol (CBD), exhibits diverse anti-cancer effects in various cancers, offering avenues for improving CCA treatment. This study investigated the effects of CBD on human CCA cells and the underlying mechanisms and .

View Article and Find Full Text PDF

Novel thiazole analogs 3a, 3b, 4, 5, 6a-g, 8a, 8b, 9a-c, 10a-d and 11 were designed and synthesized as molecular mimetics of sunitinib. antitumor activity of the obtained compounds was investigated against HepG2, HCT-116, MCF-7, HeP-2 and HeLa cancer cell lines. The obtained data showed that compounds 3b and 10c are the most potent members toward HepG2, HCT-116, MCF-7 and HeLa cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!