A series of urea-based vinyl monomers was synthesized and investigated for their ability to function as polymerizable hosts for the molecular imprinting of N-Z-D- or L-glutamic acid in polar media (DMSO or DMF). The monomers were synthesized in one step from a polymerizable isocyanate and a nonpolymerizable amine or vice versa, with yields typically over 70%. Prior to polymerization their solution binding properties vis-a-vis tetrabutylammonium benzoate in DMSO were investigated by 1H NMR, UV-vis and fluorescence monitored titrations. The affinities of the urea monomers for benzoate depended upon the substitution pattern of the urea, with all diaryl ureas exhibiting high affinity. EDMA-based imprinted polymers prepared in DMF or DMSO against Z-D-(or L)-glutamic acid using 2 equiv of the urea monomer and 2 equiv of base were able to recognize the imprinted dianion as well as larger molecules containing the glutamic acid substructure. The affinity, reflected in liquid chromatography retention data, correlated with the solution binding properties of the corresponding monomers.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jo048470pDOI Listing

Publication Analysis

Top Keywords

molecular imprinting
8
monomers synthesized
8
l-glutamic acid
8
solution binding
8
binding properties
8
monomers
5
urea
4
urea host
4
host monomers
4
monomers stoichiometric
4

Similar Publications

5-Hydroxyindoleacetic acid (5-HIAA), a vital metabolite of serotonin (5-HT), is crucial for understanding metabolic pathways and is implicated in various mental disorders. In situ monitoring of 5-HIAA is challenging due to the lack of affinity ligands and issues with electrochemical fouling. We present an advanced sensing approach that integrates customizable molecular imprinting polymer (MIP) with self-driven galvanic redox potentiometry (GRP) for precise, real-time in vivo monitoring of 5-HIAA.

View Article and Find Full Text PDF

Development of Molecularly Imprinted Photonic Crystals Sensor for High-Sensitivity, Rapid Detection of Sulfamethazine in Food Samples.

Polymers (Basel)

January 2025

Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.

As a veterinary drug, sulfamethazine is frequently used to control animal diseases. In this study, a novel molecularly imprinted photonic crystal sensor for the fast visual detection of sulfamethazine in milk and chicken has been developed. Under optimum preparation conditions, a molecularly imprinted, photonic crystal with an anti-opal structure and a clear bright color was prepared and characterized.

View Article and Find Full Text PDF

This work involves the preparation of dual surrogate-imprinted polymers (D-MIPs) for the capture of SARS-CoV-2. To achieve this goal, an innovative and novel dual imprinting approach using carboxylated-polystyrene (PS-COOH) nanoparticles with a diameter of 100 nm and a SARS-CoV-2 Spike-derived peptide was carried out at the surface of amine-functionalized silica (PS-NH) microspheres with a diameter of 500 nm. Firstly, PS-COOH nanoparticles with the same size and spherical shape as the SARS-CoV-2 virus were employed to form hemispherical indentations (HI) at the surface of the PS-NH microspheres (obtaining dummy particle-imprinted polymers, HI-MIPs).

View Article and Find Full Text PDF

Silver-Russell Syndrome (SRS) is a genetic disorder characterized by intrauterine and postnatal growth restriction. Most cases are caused by an imprinting error either with hypomethylation of the Imprinted Control Region 1 at 11p15.5, or maternal uniparental disomy of chromosome 7.

View Article and Find Full Text PDF

Monomer compounds from natural products are the major source of active pharmaceutical molecules, which provide great opportunities for discovering of new drugs. However, natural products contain a large number of rather complex compounds. It is difficult to obtain high-purity monomer compounds from complex natural products.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!