Extraocular muscles (EOM) are typically spared in Duchenne muscular dystrophy. We hypothesized that this might be due to different patterns of utrophin expression. The expression of utrophin was examined in EOM of normal cats using immunohistochemical methods and Western blot. For detecting acetylcholine receptors (AChR), we used alpha-bungarotoxin. Surprisingly, alpha-bungarotoxin failed to stain the AChR and no expression of utrophin could be detected at the neuromuscular junctions. Our study could indicate that the expression of utrophin is dependent on the structure of the AChR.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00418-005-0762-9DOI Listing

Publication Analysis

Top Keywords

expression utrophin
12
neuromuscular junctions
8
extraocular muscles
8
utrophin
5
utrophin lacking
4
lacking neuromuscular
4
junctions extraocular
4
muscles normal
4
normal cat
4
cat artefact
4

Similar Publications

Duchenne muscular dystrophy (DMD) is caused by mutations in the gene encoding dystrophin, a subsarcolemmal protein whose absence results in increased susceptibility of the muscle fiber membrane to contraction-induced injury. This results in increased calcium influx, oxidative stress, and mitochondrial dysfunction, leading to chronic inflammation, myofiber degeneration, and reduced muscle regenerative capacity. Fast glycolytic muscle fibers have been shown to be more vulnerable to mechanical stress than slow oxidative fibers in both DMD patients and DMD mouse models.

View Article and Find Full Text PDF
Article Synopsis
  • X-linked recessive dystrophinopathies are common muscular dystrophies in both humans and dogs, with 20 specific variants identified in dogs, including one in Border Collies.
  • A 5-month-old male Border Collie was diagnosed with mild dystrophin-deficient muscular dystrophy associated with a new variant in the dystrophin gene, discovered through various neurological and laboratory examinations.
  • The identified mutation caused a significant reduction in dystrophin mRNA and protein levels, but the affected dog has shown clinical stabilization by 6 months and remains stable at 2 years old, despite the typically poor prognosis for the condition.
View Article and Find Full Text PDF

Molecular and Biochemical Therapeutic Strategies for Duchenne Muscular Dystrophy.

Neurol Int

July 2024

Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India.

Significant progress has been achieved in understanding Duchenne muscular dystrophy (DMD) mechanisms and developing treatments to slow disease progression. This review article thoroughly assesses primary and secondary DMD therapies, focusing on innovative modalities. The primary therapy addresses the genetic abnormality causing DMD, specifically the absence or reduced expression of dystrophin.

View Article and Find Full Text PDF

Unlabelled: The injectisome encoded by pathogenicity island 2 (SPI-2) had been thought to translocate 28 effectors. Here, we used a proteomic approach to characterize the secretome of a clinical strain of invasive non-typhoidal serovar Enteritidis that had been mutated to cause hyper-secretion of the SPI-2 injectisome effectors. Along with many known effectors, we discovered the novel SseM protein.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is a lethal muscle disease caused by the absence of the protein dystrophin. Dystrophin is hypothesized to work as a molecular shock absorber that limits myofiber membrane damage when undergoing reversible unfolding upon muscle stretching and contraction. Utrophin is a dystrophin homologue that is under investigation as a protein replacement therapy for DMD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!