Most stem cells are not totipotent. Instead, they are partially committed but remain undifferentiated. Upon appropriate stimulation they are capable of regenerating mature cell types. Little is known about the genetic programmes that maintain the undifferentiated phenotype of lineage-restricted stem cells. Here we describe the molecular details of a nodal point in adult melanocyte stem cell differentiation in which Pax3 simultaneously functions to initiate a melanogenic cascade while acting downstream to prevent terminal differentiation. Pax3 activates expression of Mitf, a transcription factor critical for melanogenesis, while at the same time it competes with Mitf for occupancy of an enhancer required for expression of dopachrome tautomerase, an enzyme that functions in melanin synthesis. Pax3-expressing melanoblasts are thus committed but undifferentiated until Pax3-mediated repression is relieved by activated beta-catenin. Thus, a stem cell transcription factor can both determine cell fate and simultaneously maintain an undifferentiated state, leaving a cell poised to differentiate in response to external stimuli.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature03292DOI Listing

Publication Analysis

Top Keywords

stem cell
12
nodal point
8
melanocyte stem
8
cell differentiation
8
stem cells
8
maintain undifferentiated
8
differentiation pax3
8
transcription factor
8
cell
6
stem
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!