Objective: To assess whether polysaccharides isolated from fungi, Phellinus spp, could reduce the adhesion and abscess formation in a rat peritonitis model.
Summary Background Data: Although polysaccharides from Phellinus spp is a well-known material with antiinflammatory properties, little is known regarding its ability to prevent intraperitoneal adhesions. We have assessed the adhesion- and abscess-reducing effect of polysaccharides from Phellinus gilvus (PG) and Phellinus linteus (PL) in a rat peritonitis model.
Methods: In 60 SD rats, experimental peritonitis was induced using the cecal ligation and puncture model (CLP). Animals were randomly assigned to 5 groups; ringer lactate solution (RL group), polysaccharides from PG and PL (PG and PL group), hyaluronic acid (HA group), and carboxymethylcellulose (CMC group). Intraperitoneal adhesions and abscesses were noted at 7 day after CLP. RT-PCR assay for urokinase-type plasminogen activator (uPA), its cellular receptor (uPAR), tissue-type plasminogen activator (tPA), plasminogen activator inhibitor type 1 (PAI-1), and tumor necrosis factor (TNF)- alpha was performed to assess the cecal tissue.
Results: Adhesion formation was significantly reduced in PG, PL, CMC, and HA groups (P < 0.001) compared with that in RL group. The incidence of abscesses was also significantly reduced in PG and PL groups (P < 0.05) compared with that in the RL group. The level of uPA, uPAR, tPA, and TNF-alpha was highly expressed in PG and PL group, as compared with the RL group.
Conclusions: We concluded that PG and PL had significant adhesion- and abscess-reducing effects and may act by modulating fibrinolytic capacity of uPA and/or tPA produced from macrophages in a rat peritonitis model.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1356995 | PMC |
http://dx.doi.org/10.1097/01.sla.0000154281.79639.89 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!