Clinically important resistance of fungal pathogens to azole antifungal drugs is most frequently caused by the over-expression of energy-dependent drug efflux pumps. These pumps usually belong to either the ATP-binding cassette (ABC) family or the Major Facilitator Superfamily (MFS) class of membrane transporter. Little is known about how these pumps work and there is an urgent need to develop pump antagonists that circumvent azole resistance. We have developed a protein hyper-expression system to facilitate functional analysis of efflux pumps based on a Saccharomyces cerevisiae host which has been deleted in seven major ABC transporters to reduce the background of endogenous efflux activity. Plasmid pABC3 was engineered to allow functional hyper-expression of foreign proteins in this host. The main advantages of the system include its ease of directional cloning and the use of homologous recombination to stably integrate single copy constructs into the host genome under the control of a highly active transcriptional regulator. The system has been used to clone and functionally hyper-express genes encoding drug efflux pumps from several pathogenic fungi. Furthermore, the protein hyper-expression system has been used to screen for pump inhibitors and study the structure and function of heterologous membrane proteins.

Download full-text PDF

Source

Publication Analysis

Top Keywords

drug efflux
12
efflux pumps
12
functional analysis
8
saccharomyces cerevisiae
8
protein hyper-expression
8
hyper-expression system
8
efflux
5
pumps
5
analysis fungal
4
fungal drug
4

Similar Publications

Membrane drug transporters in cancer: From chemoresistance mechanism to therapeutic strategies.

Biochim Biophys Acta Rev Cancer

January 2025

Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau, China; Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau, China. Electronic address:

Chemoresistance is a multifactorial phenomenon and the primary cause to the ineffectiveness of oncotherapy and cancer recurrence. Membrane drug transporters are crucial for drug delivery and disposition in cancer cells. Changes in the expression and functionality of these transporters lead to decreased intracellular accumulation and reduced toxicity of antineoplastic drugs.

View Article and Find Full Text PDF

Arsenic-induced modulation of virulence and drug resistance in Pseudomonas aeruginosa.

J Hazard Mater

January 2025

Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610213, China. Electronic address:

Arsenic contamination of water sources, whether from natural or industrial origins, represents a significant risk to human health. However, its impact on waterborne pathogens remains understudied. This research explores the effects of arsenic exposure on the opportunistic pathogen Pseudomonas aeruginosa, a bacterium found in diverse environments.

View Article and Find Full Text PDF

Pharmacological, computational, and mechanistic insights into triptolide's role in targeting drug-resistant cancers.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Research and Enterprise, University of Cyberjaya, Persiaran Bestari, Cyber 11, 63000, Cyberjaya, Selangor, Malaysia.

As a promising candidate for tackling drug-resistant cancers, triptolide, a diterpenoid derived from the Chinese medicinal plant Tripterygium wilfordii, has been developed. This review summarizes potential antitumor activities, including the suppression of RNA polymerase II, the suppression of heat shock proteins (HSP70 and HSP90), and the blockade of NF-kB signalling. Triptolide is the first known compound to target cancer cells specifically but spare normal cells, and it has success in treating cancers that are difficult to treat, including pancreatic, breast, and lung cancers.

View Article and Find Full Text PDF

The global dissemination of pathotypes with multidrug-resistant (MDR) and hypervirulent traits poses a threat to public health. The situation in Armenia is unclear, and we performed a comprehensive characterisation of 48 clinical isolates of , collected from 2018 to 2024. The majority of the isolates (64.

View Article and Find Full Text PDF

The challenges of antimicrobial resistance (AMR) to human health have pushed for the discovery of a new antibiotics agent from natural products. Cyanobacteria are oxygen-producing photosynthetic prokaryotes found in a variety of water habitats. Secondary metabolites are produced by cyanobacteria to survive extreme environmental stress factors, including microbial competition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!