Linear and circularly polarized light to study anisotropy and resonant scattering in magnetic thin films.

J Synchrotron Radiat

Laboratório Nacional de Luz Síncrotron, CP 6192, 13084-971, Campinas, SP, Brazil.

Published: March 2005

The remarkable polarization properties of synchrotron light have lead to the advent of modern synchrotron-related spectroscopic studies with angular and/or magnetic selectivity. Here an overview is given of the prominent aspects of the polarization of the light delivered by a bending magnet, and some dichroic properties in X-ray absorption spectroscopy (XAS). Two studies developed at the Brazilian Synchrotron Light Laboratory are then reported, exemplifying the profit gained using linear and circular polarization of X-rays for the study of magnetic thin films and multilayers. Angle-resolved XAS was used in strained manganite thin films to certify a model of local distortion limited within the MnO6 polyhedron. A pioneering experience of X-ray magnetic scattering at grazing incidence associated with dispersive XAS in a Co/Gd multilayer draws new perspectives for magnetic studies in thin films and multilayers under atmospheric conditions in the hard X-ray range.

Download full-text PDF

Source
http://dx.doi.org/10.1107/S0909049504032753DOI Listing

Publication Analysis

Top Keywords

thin films
16
magnetic thin
8
synchrotron light
8
films multilayers
8
magnetic
5
linear circularly
4
circularly polarized
4
light
4
polarized light
4
light study
4

Similar Publications

Hypothesis: Bubbles oscillating near a free surface are common across numerous systems. Thin liquid films (TLFs) formed between an oscillating bubble and a free surface can exhibit distinct morphological features influenced by interfacial properties, evaporation, and deformation history. We hypothesize that a continuous film presence throughout oscillation results in a wimple morphology, whereas intermittent film presence leads to a dimple formation.

View Article and Find Full Text PDF

High Performance of Cs2AgBiBr6 Perovskite-based Photodetectors by Adding DEAC.

Chemistry

December 2024

East China University of Science and Technology, School of Materials Science and Engineering, meilong Road, 200237, shanghai, CHINA.

Perovskite-based photodetectors (PDs) are broadly utilized in optical communication, non-destructive testing, and smart wearable devices due to their ability to convert light into electrical signals. However, toxicity and instability hold back their mass production and commercialization. The lead-free Cs2AgBiBr6 double perovskite film, promised to be an alternative, is fabricated by electrophoretic deposition (EPD), which compromises film quality.

View Article and Find Full Text PDF

High photothermal conversion efficiency of RF sputtered TiO Magneli phase thin films and its linear correlation with light absorption capacity.

Sci Rep

December 2024

Centre Énergie, Matériaux Télécommunications, Institut National de la Recherche Scientifique, 1650, Blvd, Lionel-Boulet, Varennes, QC, J3X-1P7, Canada.

RF-sputtering is used to deposit TiO-Magneli-phase films onto various substrates at deposition temperatures (T) ranging from 25 to 650 °C. Not only the structural, but also electrical conductivity, optical absorbance and photothermal properties of the TiO films are shown to change significantly with T. A T of 500 °C is pointed out as the optimal temperature that yields highly-crystalized pure-TiO-Magneli phase with a densely-packed morphology and a conductivity as high as 740 S/cm.

View Article and Find Full Text PDF

Due to their outstanding electrical and thermal properties, graphene and related materials have been proposed as ideal candidates for the development of lightweight systems for thermoelectric applications. Recently, the nanolaminate architecture that entails alternation of continuous graphene monolayers and ultrathin polymer films has been proposed as an efficient route for the development of composites with impressive physicochemical properties. In this work, we present a novel layer-by-layer approach for the fabrication of highly ordered, flexible, heat-resistant, and electrically conductive freestanding graphene/polymer nanolaminates through alternating Marangoni-driven self-assembly of reduced graphene oxide (rGO) and poly(ether imide) (PEI) films.

View Article and Find Full Text PDF

Robust and ultra-thin nanocellulose/MXene composite film and its performance in efficient electricity-generation and sensing.

Int J Biol Macromol

December 2024

Department of Plastic and Cosmetic Surgery, Treatment Center of Burn and Trauma, Affiliated Hospital of Jiangnan University, Wuxi 214122, China. Electronic address:

The conversion of mechanical energy into electrical energy by triboelectric nanogenerators (TENG) has attracted attention in recent years, particularly in the field of wearable sensor. In this work, TEMPO-oxidized cellulose nanofibers (TOCNF) with carboxylate groups were compounded with MXene to serve as both the negative friction layer and the electrode in assembling a TENG with nylon. The synergistic effect between TOCNF and MXene was analyzed to disclose its influence on the performance of the as-prepared TENG.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!