A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Medial septal GABAergic neurons express the somatostatin sst2A receptor: functional consequences on unit firing and hippocampal theta. | LitMetric

GABAergic septohippocampal neurons play a major role in the generation of hippocampal theta rhythm, but modulatory factors intervening in this function are poorly documented. The neuropeptide somatostatin (SST) may be one of these factors, because nearly all hippocampal GABAergic neurons projecting to the medial septum/diagonal band of Broca (MS-DB) express SST. In this study, we took advantage of the high and selective expression of the SST receptor sst2A in MS-DB to examine its possible role on theta-related activity. Immunohistochemical experiments demonstrated that sst2A receptors were selectively targeted to the somatodendritic domain of neurons expressing the GABAergic marker GAD67 but were not expressed by cholinergic neurons. In addition, a subpopulation of GABAergic septohippocampal projecting neurons expressing parvalbumin (PV) also displayed sst2A receptors. Using in vivo juxtacellular recording and labeling with neurobiotin, we showed that a number of bursting and nonbursting neurons exhibiting high discharge rates and brief spikes were immunoreactive for PV or GAD67 and expressed the sst2A receptor. Microiontophoresis applications of SST and the sst2A agonist octreotide (OCT) showed that sst2A receptor activation decreased the discharge rate of both nonbursting and bursting MS-DB neurons and lessened the rhythmic activity of the latter. Finally, intraseptal injections of OCT and SST in freely moving rats reduced the power of hippocampal EEG in the theta band. Together, these in vivo experiments suggest that SST action on MS-DB GABAergic neurons, through sst2A receptors, represents an important modulatory mechanism in the control of theta activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6726075PMC
http://dx.doi.org/10.1523/JNEUROSCI.4619-04.2005DOI Listing

Publication Analysis

Top Keywords

gabaergic neurons
12
sst2a receptor
12
sst2a receptors
12
neurons
9
sst2a
8
hippocampal theta
8
gabaergic septohippocampal
8
neurons expressing
8
gad67 expressed
8
gabaergic
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!