Phosphorylation and dephosphorylation are primary means for rapid regulation of a variety of neuronal functions, such as membrane excitability, neurotransmitter release, and gene expression. Voltage-gated Ca2+ channels are targets for phosphorylation by a variety of second messengers through activation of different types of protein kinases (PKs). Protein phosphatases (PPs), like PKs, are equally important in regulating Ca2+ channels in neurons. However, much less is understood about whether and how a particular type of PP contributes to regulating neuronal Ca2+ channel activities. This is primarily because of the lack of specific inhibitors/activators for different types of PPs, particularly the PP2c family. The functional roles of PP2c and its substrates in the brain remain virtually unknown. During our yeast two-hybrid screening, PP2calpha was pulled out by both N- and P/Q-type Ca2+ channel C termini. This raised the possibility that PP2calpha might be associated with voltage-gated Ca2+ channels for regulation of the Ca(2+) channel activity. Biochemical studies show that PP2calpha binds directly to neuronal Ca2+ channels forming a functional protein complex in vivo. PP2calpha, unlike PP1, PP2a and PP2b, is more effective in dephosphorylation of neuronal Ca2+ channels after their phosphorylation by PKC. In hippocampal neurons, disruption of the PP2calpha-Ca2+ channel interaction significantly enhances the response of Ca2+ channels to modulation by PKC. Thus, the PP2calpha-Ca2+ channel complex is responsible for rapid dephosphorylation of Ca2+ channels and may contribute to regulation of synaptic transmission in neurons.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6726054PMC
http://dx.doi.org/10.1523/JNEUROSCI.4790-04.2005DOI Listing

Publication Analysis

Top Keywords

ca2+ channels
32
neuronal ca2+
16
ca2+ channel
12
ca2+
11
channel complex
8
dephosphorylation neuronal
8
channels
8
voltage-gated ca2+
8
pp2calpha-ca2+ channel
8
channel
6

Similar Publications

Filamin A C-terminal fragment modulates Orai1 expression by inhibition of protein degradation.

Am J Physiol Cell Physiol

January 2025

Department of Physiology (Cellular Physiology Research Group),Institute of Molecular Pathology Biomarkers (IMPB), University of Extremadura, 10003-Caceres, Spain.

Filamin A (FLNA) is an actin-binding protein that has been reported to interact with STIM1 modulating the activation of Orai1 channels. Cleaving of FLNA by calpain leads to a C-terminal fragment that is involved in a variety of functional and pathological events, including pro-oncogenic activity in different types of cancer. Here we show that full-length FLNA is downregulated in samples from colon cancer patients as well as in the adenocarcinoma cell line HT-29.

View Article and Find Full Text PDF

Background: The dried root of Inula helenium L., known as Inulae Radix in Mongolian medicine, is a widely used heat-clearing plant drug within the Asteraceae family. Alantolactone (ATL), a compound derived from Inulae Radix, is a sesquiterpene lactone with a range of biological activities.

View Article and Find Full Text PDF

Single cell Ca imaging is essential for the study of Ca channels activated by various stimulations like temperature, voltage, native compound and chemicals et al. It primarily relies on microscopy imaging technology and the related Ca indicator Fura-2/AM (AM is the abbreviation for Acetoxymethyl ester). Inside the cells, Fura-2/AM is hydrolyzed by esterases into Fura-2, which can reversibly bind with free cytoplasmic Ca.

View Article and Find Full Text PDF

Heavy mechanical force decelerates orthodontic tooth movement via Piezo1-induced mitochondrial calcium down-regulation.

Genes Dis

March 2025

College of Stomatology, Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.

Orthodontic tooth movement (OTM) depends on periodontal ligament cells (PDLCs), which sense biomechanical stimuli and initiate alveolar bone remodeling. Light (optimal) forces accelerate OTM, whereas heavy forces decelerate it. However, the mechanisms by which PDLCs sense biomechanical stimuli and affect osteoclastic activities under different mechanical forces (MFs) remain unclear.

View Article and Find Full Text PDF

Deficiency of Endothelial Impairs Pulmonary Vascular Angiogenesis and Predisposes Pulmonary Hypertension.

Hypertension

January 2025

State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Medical University, China. (F.W., Z.L., W.L., H.L., H.F., S.L., C.Z., Y.Z., S.M., C.W., Z.Z., W.F., J.Z., Q.Y., M.D., W.K., A.L., J.L., X.L., X.W., N.L., Y.C., K.Y., J.W.).

Background: Mechanosensitive Piezo1 channel plays a key role in pulmonary hypertension (PH). However, the role of Piezo2 in PH remains unclear.

Methods: Endothelial cell (EC)-specific knockout (, Tek-Cre; ) rats and primarily cultured pulmonary microvascular ECs were used to determine the role of Piezo2 in PH.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!