Purpose: The phosphorescence lifetime of certain metalloporphyrins dissolved in a physiological medium provides an optical signature for local oxygen concentration (pO(2)). This effect is used for measuring physiological pO(2) levels in various tissues. However, the phosphorescence quenching of certain metalloporphyrin triplet states by oxygen also creates singlet oxygen, which is highly reactive and capable of inducing tissue damage. In the current study, the Pd-meso-tetra(4-carboxyphenyl) porphyrin dye (PdTCPP) was simultaneously used as an oxygen sensor and a photosensitizer. Phototoxicity was assessed in the eye fundus and correlated with tissue oxygenation, drug-light dose, and severity of tissue damage.

Methods: The kinetics of photochemical oxygen depletion during PdTCPP excitation was measured in vivo on the optic disc of piglets by phosphorescence lifetime imaging. Blood-retinal barrier breakdown and tissue damage were assessed by confocal and electron microscopy.

Results: For a retinal irradiance of 5 mW/cm(2) at 532 nm and an injected PdTCPP dose of 20 mg/kg, the mean phosphorescence lifetime measured at the optic disc increased from 100 to 600 micros within 8 minutes of continuous illumination. This corresponds to a decrease of pO(2) from 25 to 0 mm Hg, induced by a light dose of only 2.4 J/cm(2). An exposure time of 6 minutes (1.8 J/cm(2)) generated an increase in phosphorescence lifetime from 100 to 400 micros, corresponding to a decrease in pO(2) from 25 to 4 mm Hg. This caused edema in all retinal layers, whereas irradiation of 2 minutes (0.6 J/cm(2)) damaged blood vessels and induced edema in the inner nuclear layer only. Heavy redistribution of occludin occurred after a 30-minute exposure time (9 J/cm(2)).

Conclusions: PdTCPP is potentially phototoxic under certain experimental conditions and can induce damage in peripapillary retina and optic nerve head after light exposure. The severity of tissue damage correlates with the phosphorescence measurements.

Download full-text PDF

Source
http://dx.doi.org/10.1167/iovs.04-0500DOI Listing

Publication Analysis

Top Keywords

phosphorescence lifetime
16
tissue damage
12
severity tissue
8
optic disc
8
decrease po2
8
exposure time
8
minutes j/cm2
8
oxygen
6
phosphorescence
6
damage
5

Similar Publications

Aromatic ring compounds with different conjugation degrees in a boronic acid matrix to realize multicolor phosphorescence for time division colorful multiplexing.

Nanoscale

January 2025

Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education International Center for Dielectric Research & Shaanxi Engineering Research Center of Advanced Energy Materials and Devices, Xi'an Jiaotong University, 710049 Xi'an, China.

Long lifetime multicolor phosphorescence materials possess excellent optical properties and have important application prospects in the fields of advanced anti-counterfeiting and information encryption. However, realizing long lifetime and color-tunable room temperature phosphorescent (RTP) carbon dot (CD) materials has proved challenging. In this study, the organic precursor molecules 2-phenethylamine (2-Ph), 9-aminophenanthrene (9-Ph) and 1-aminopyrene (1-Py) with different degrees of conjugation were selected to synthesize RTP CD composites: 2-Ph@BA, 9-Ph@BA and 1-Py@BA were synthesized by mixing with a boric acid (BA) matrix under high temperature pyrolysis.

View Article and Find Full Text PDF

The exploration of pure organic ultra-long room temperature phosphorescence (RTP) materials has emerged as a research hotspot in recent years. Herein, a simple strategy for fabricating long-afterglow polymer aerogels with three-dimensional ordered structures and environmental monitoring capabilities is proposed. Based on the non-covalent interactions between pectin (PC) and melamine formaldehyde (MF), a composite aerogel (PCMF@phenanthrene) (PCMF@PA) doped with phosphorescent organic small molecules was constructed.

View Article and Find Full Text PDF

Polymeric room temperature phosphorescence (RTP) materials have been well developed and utilized in various fields. However, their fast thermo- and moisture-quenching behavior highly limit their applications in certain harsh environments. Therefore, the preparation of materials with thermo- and moisture-resistant phosphorescence is greatly attractive.

View Article and Find Full Text PDF

Metal-organic complexes with long afterglow luminescence have attracted extensive attention due to potential applications in display, sensing and information security. However, most of the metal-organic complex long afterglow materials reported so far are limited to the use of UV light as the excitation source, and the ambiguity of the structure-activity relationship makes the development of metal-organic complexes extremely limited. Herein, a series of metal-organic complexes with ultralong emission lifetime is constructed by coordination assembly of Zn(II) with three isomers.

View Article and Find Full Text PDF

N-heterocyclic carbene (NHC)-based phosphorescent iridium complexes have attracted extensive attention due to their good optical properties and high stability in recent years. However, currently reported NHC-based iridium complexes can easily achieve emission of blue, green, or even ultraviolet light, while emission of red or deep-red light is relatively rare. Here, we report a new family of NHC-based deep-red iridium complexes (Ir1, Ir2, Ir3, and Ir4) featuring three-charge (0, -1, -2) ligands.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!