Transfection with RNA is an attractive method of Ag delivery to dendritic cells (DCs), but has not yet been standardized. We describe in this study the methods to efficiently generate an optimized mature monocyte-derived DC vaccine at clinical scale based on the electroporation of several RNAs either into immature DC followed by maturation or, alternatively, directly into mature DCs, which has not been possible so far with such high efficiency. Electroporation of DCs resulted in high yield, high transfection efficiency (>90%), and high migration capacity. Intracellular staining allowed the study of the expression kinetics of Ags encoded by the transfected RNAs (MelanA, MAGE-3, and survivin) and a validation of the vaccine (>/=90% transfection efficiency). Expression of all three Ags peaked 3-4 h after electroporation in DC transfected either before or after maturation, but decreased differently. The DC vaccine can also be cryopreserved and nevertheless retains its viability, stimulatory capacity as well as migratory activity. In addition, we uncover that DC transfected after rather than before maturation appear to be preferable vaccines not only from a production point of view but also because they appear to be immunologically superior for CTL induction in sharp contrast to common belief. DCs transfected after maturation not only more effectively generate and present the Mage-3.A1 and MelanA.A2.1 epitopes to T cell clones, but they even are superior in priming to the standard proteasome-dependent MelanA.A2.1 wild-type prototype tumor epitope, both in terms of T cell expansion and effector function on a per cell basis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4049/jimmunol.174.5.3087 | DOI Listing |
Poult Sci
December 2024
Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China.
J Mater Chem B
January 2025
National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
Microtia profoundly affects patients' appearance and psychological well-being. Tissue engineering ear cartilage scaffolds have emerged as the most promising solution for ear reconstruction. However, constructing tissue engineering ear cartilage scaffolds requires multiple passaging of chondrocytes, resulting in their dedifferentiation and loss of their special phenotypes and functions.
View Article and Find Full Text PDFZhonghua Kou Qiang Yi Xue Za Zhi
January 2025
State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan430079, China.
Front Immunol
January 2025
Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France.
Parallel analysis of phenotype, transcriptome and antigen receptor sequence in single B cells is a useful method for tracking B cell activation and maturation during immune responses. However, in most cases, the specificity and affinity of the B cell antigen receptor cannot be inferred from its sequence. Antibody cloning and expression from single B cells is then required for functional assays.
View Article and Find Full Text PDFSci Rep
December 2024
Central Laboratory, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215000, Jiangsu, China.
Yu-Ping-Feng-San (YPF) is a famous classical Chinese medicine formula known for its ability to boost immunity. YPF has been applied to enhance the immune status of tumor patients in clinical practice. However, there is still a lack of research on its immune regulatory effects and mechanisms in the tumor microenvironment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!