The Ly49 family of lectin-like receptors in rodents includes both stimulatory and inhibitory members. Although NK alloreactivity in mice is regulated primarily by inhibitory Ly49 receptors, in rats activating Ly49 receptors are equally important. Previous studies have suggested that activating rat Ly49 receptors are triggered by polymorphic ligands encoded within the nonclassical class Ib region of the rat MHC, RT1-CE/N/M, while inhibitory Ly49 receptors bind to widely expressed classical class Ia molecules encoded from the RT1-A region. To further investigate rat Ly49-mediated regulation of NK alloreactivity, we report in this study the identification and characterization of two novel paired Ly49 receptors that we have termed Ly49 inhibitory receptor 5 (Ly49i5) and Ly49 stimulatory receptor 5 (Ly49s5). Using a new mAb (mAb Fly5), we showed that Ly49i5 is an inhibitory receptor that recognizes ligands encoded within the class Ib region of the u and l haplotypes, while the structurally related Ly49s5 is an activating receptor that recognizes class Ib ligands of the u haplotype. Ly49s5 is functionally expressed in the high NK-alloresponder PVG strain, but not in the low alloresponder BN strain, in which it is a pseudogene. Ly49s5 is hence not responsible for the striking anti-u NK alloresponse previously described in BN rats (haplotype n), which results from repeated alloimmunizations with u haplotype cells. The present studies support the notion of a complex regulation of rat NK alloreactivity by activating and inhibitory Ly49 members, which may be highly homologous in the extracellular region and bind similar class Ib-encoded target ligands.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4049/jimmunol.174.5.2702 | DOI Listing |
Immunol Rev
January 2025
W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA.
Natural killer (NK) cells are essential elements of the innate immune response against tumors and viral infections. NK cell activation is governed by NK cell receptors that recognize both cellular (self) and viral (non-self) ligands, including MHC, MHC-related, and non-MHC molecules. These diverse receptors belong to two distinct structural families, the C-type lectin superfamily and the immunoglobulin superfamily.
View Article and Find Full Text PDFbioRxiv
November 2024
Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
Natural killer (NK) cells recognize target cells through germline-encoded activation and inhibitory receptors enabling effective immunity against viruses and cancer. The Ly49 receptor family in the mouse and killer immunoglobin-like receptor family in humans play a central role in NK cell immunity through recognition of MHC class I and related molecules. Functionally, these receptor families are involved in licensing and rejection of MHC-I-deficient cells through missing-self.
View Article and Find Full Text PDFNat Commun
June 2024
Department of Genetics, Washington University School of Medicine, St. Louis, 63110, USA.
Comparative genomics has revealed the rapid expansion of multiple gene families involved in immunity. Members within each gene family often evolved distinct roles in immunity. However, less is known about the evolution of their epigenome and cis-regulation.
View Article and Find Full Text PDFFront Immunol
May 2024
Division of Human Immunology, International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan.
Inhibitory natural killer (NK) cell receptors recognize MHC class I (MHC-I) in on target cells and suppress cytotoxicity. Some NK cell receptors recognize MHC-I in , but the role of this interaction is uncertain. Ly49Q, an atypical Ly49 receptor expressed in non-NK cells, binds MHC-I in and mediates chemotaxis of neutrophils and type I interferon production by plasmacytoid dendritic cells.
View Article and Find Full Text PDFNat Commun
January 2024
Department of Dermatology, Lausanne University Hospital (CHUV) and Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
Cancer-associated immune dysfunction is a major challenge for effective therapies. The emergence of antibodies targeting tumor cell-surface antigens led to advancements in the treatment of hematopoietic malignancies, particularly blood cancers. Yet their impact is constrained against tumors of hematopoietic origin manifesting in the skin.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!