Dentin matrix protein 1 (DMP1) is highly expressed in osteocytes and is mechanically responsive. To study osteocyte-specific and mechanically regulated DMP1 gene expression, the transcriptional activity of three cis-regulatory regions was first examined in an osteoblast differentiation model in vitro using a green fluorescent protein (GFP) reporter. Expression of the -9624 to +1996 bp (10 kb) and -7892 to +4439 bp (8 kb) DMP1 cis-regulatory regions dramatically increased in areas of mineralized matrix, in dendritic, osteocyte-like cells. Mineralizing cultures expressing the 8-kb construct show dramatic GFP increases in response to loading in cells with a dendritic morphology. Transgenic mice expressing the 8-kb DMP1-GFP and -2433 to +4439 bp (2.5 kb) DMP1-LacZ were generated. Osteocyte-specific expression was found with the 8 kb but not with the 2.5 kb in postnatal animals. However, the 2.5 kb could support expression in rapidly forming osteoblasts and pre-osteocytes in the embryo. Primary calvarial osteoblast cultures demonstrated that the 2.5 kb supports weak expression in a subset of osteoblasts and pre-osteocytes, but not in mature osteocytes. However, the 8 kb supports robust expression in primary bone marrow cultures. Therefore the region -7892 to -2433 bp, termed a 5.5-kb "Osteocyte Enhancer Module," appears to be required for osteocyte specificity. Ulnae of mice with the 8-kb DMP1-GFP were subjected to mechanical loading where GFP expression increased selectively and locally in osteocytes, distal to the mid-shaft and near the surface of the bone. Thus, the 8-kb region of the DMP1 gene is a target for mechanotransduction in osteocytes, and its cis-regulatory activity may be correlated to local strain in bone.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M500104200DOI Listing

Publication Analysis

Top Keywords

dentin matrix
8
matrix protein
8
mechanical loading
8
dmp1 gene
8
cis-regulatory regions
8
expressing 8-kb
8
8-kb dmp1-gfp
8
osteoblasts pre-osteocytes
8
expression
7
osteocytes
5

Similar Publications

Role of CXCL10 released from osteocytes in response to TNF-α stimulation on osteoclasts.

Sci Rep

January 2025

Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan.

Tumor necrosis factor-alpha (TNF-α) is a significant cytokine that regulates bone resorption under inflammatory conditions. However, its mechanism of action in osteocytes remains unclear. In this study, highly purified osteocytes were isolated from dentin matrix protein 1 (DMP1)-Topaz mice using cell sorter.

View Article and Find Full Text PDF

Recently, photoactivated riboflavin (RF) treatments have been approved to improve resin-dentin bonding by enhancing dentinal collagen crosslinking. This study aimed to evaluate whether RF activated by blue light (BL, 450 nm) strengthens the collagen matrix, increases resistance to enzymatic degradation, and improves adhesion as effectively as ultraviolet A (UVA, 375 nm) activation. Six groups were examined: control (no treatment); RF0.

View Article and Find Full Text PDF

How to Deal with Pulpitis: An Overview of New Approaches.

Dent J (Basel)

January 2025

Department of Conservative Dentistry with Endodontics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-902 Bytom, Poland.

Traditional root canal therapy (RCT) effectively removes diseased or necrotic pulp tissue and replaces it with inorganic materials. Regenerative endodontics is an alternative to conventional RCT by using biologically based approaches to restore the pulp-dentin complex. This review explores emerging techniques, including autogenic and allogenic pulp transplantation, platelet-rich fibrin, human amniotic membrane scaffolds, specialized pro-resolving mediators, nanofibrous and bioceramic scaffolds, injectable hydrogels, dentin matrix proteins, and cell-homing strategies.

View Article and Find Full Text PDF

To investigate the effect of concentrated growth factor (CGF) on the biological performance of human dental pulp stem cells (hDPSCs) under oxidative stress status induced by hydrogen peroxide (HO). The hDPSCs were isolated by using tissue block separation method from healthy permanent teeth extracted for orthodontic reason. hDPSCs surface markers CD34, CD45, CD90 and CD105 were detected by flow cytometry.

View Article and Find Full Text PDF

Bioactive glass 45S5 promotes odontogenic differentiation of apical papilla cells through autophagy.

Hua Xi Kou Qiang Yi Xue Za Zhi

February 2025

Dept. of Cariology and Endodontics, Binzhou Medical University Hospital, Binzhou 256600, China.

Objectives: The mechanism of the odontogenic differentiation of apical papillary cells (APCs) stimulated by bioactive glass 45S5 is still unclear. This study aims to investigate the effect of autophagy on the odontogenic differentiation of APCs stimulated by bioactive glass 45S5.

Methods: APCs were isolated and cultured , and the cell origin was identified by flow cytometry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!