We have earlier postulated that the presence of a pyridazone ring fused with an anthracenedione moiety resulted in the analog's ability to overcome multidrug resistance of tumor cells [J. Med. Chem.1999, 42, 3494]. High cytotoxic activity of obtained anthrapyridazones [Bioorg. Med. Chem.2003, 11, 561] toward the resistant cell lines, prompted us to synthesize the similarly modified acridine compounds. A series of pyridazinoacridin-3-one derivatives (2b-h) were prepared from the reaction of 9-oxo-9,10-dihydroacridine-1-carboxylate with POCl(3), followed by addition of the appropriate (alkylamino)alkylhydrazines. In vitro cytotoxic activity toward sensitive and resistant leukemia cell lines: L1210, K562, K562/DX, HL-60, HL-60/VINC, and HL-60/DX, with various type of multidrug resistance (MDR and MRP) was determined. The compounds studied exhibited in comparison to the reference cytostatics (DX, MIT) desirable very low resistance indexes (RI). Variations have been observed depending upon the substituent and the type of drug exporting pump. The cytotoxic activities of examined compounds, as well as of model anthrapyridazone derivative PDZ, were lower than those of reference drugs (DX, MIT) due to their diminished affinity to DNA.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmc.2005.01.023DOI Listing

Publication Analysis

Top Keywords

cell lines
12
multidrug resistance
8
cytotoxic activity
8
27-dihydro-3h-pyridazino[543-kl]acridin-3-one derivatives
4
derivatives novel
4
novel type
4
cytotoxic
4
type cytotoxic
4
cytotoxic agents
4
agents active
4

Similar Publications

Jaundice is an indication of hyperbilirubinemia and is caused by derangements in bilirubin metabolism. It is typically apparent when serum bilirubin levels exceed 3 mg/dL and can indicate serious underlying disease of the liver or biliary tract. A comprehensive medical history, review of systems, and physical examination are essential for differentiating potential causes such as alcoholic liver disease, biliary strictures, choledocholithiasis, drug-induced liver injury, hemolysis, or hepatitis.

View Article and Find Full Text PDF

The early stages of HIV-1 infection include the trafficking of the viral core into the nucleus of infected cells. However, much remains to be understood about how HIV-1 accomplishes nuclear import and the consequences of the import pathways utilized on nuclear events. The host factor cleavage and polyadenylation specificity factor 6 (CPSF6) assists HIV-1 nuclear localization and post-entry integration targeting.

View Article and Find Full Text PDF

FBXW7 metabolic reprogramming inhibits the development of colon cancer by down-regulating the activity of arginine/mToR pathways.

PLoS One

January 2025

Center of Gene Sequencing, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, P. R. China.

FBXW7 is a tumor suppressor gene that regulates metabolism and is associated with the onset and progression of colorectal cancer (CRC)), however, the precise mechanism whereby FBXW7 participates in the metabolic reprogramming of CRC remains unclear. Here, the research aims to reveal the association between the expression of FBXW7 and clinical variables and to investigate the molecular mechanism by which FBXW7 plays a critical role in the development of CRC. The clinical importance of FBXW7 in CRC was determined by immunohistochemistry.

View Article and Find Full Text PDF

Mast cells, immune sentinels that respond to various stimuli in barrier organs, provide defense by expressing pattern recognition receptors, such as Toll-like receptors (TLRs). They may affect inflammatory responses and wound healing. Here, we investigated the effect of TLR2/6-stimulated mast cells on wound healing in keratinocytes.

View Article and Find Full Text PDF

Despite substantial advances in the antitumor effects of annonaceous acetogenins (ACGs), the absence of a defined biological action mechanism remains a major barrier to their clinical application. Here, it is found that squamocin effectively depletes both EZH2 and MYC in multiple cancer cell lines, including head and neck squamous cell carcinoma, and gastric and colorectal cancer, demonstrating potent efficacy in suppressing these in vivo tumor models. Through the combination of surface plasmon resonance (SPR), differential scanning fluorimetry (DSF), and cellular thermal shift assay (CETSA), heat shock protein 90α (HSP90α) is identified as the direct binding target of squamocin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!