Saliva affects the antifungal activity of exogenously added histatin 3 towards Candida albicans.

FEMS Microbiol Lett

Gene Therapy and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.

Published: March 2005

Antifungal activity of histatin 3 against two Candida albicans clinical isolates was determined in assays containing rabbit submandibular gland saliva. Histatin 3 inhibited the cell growth and germination of both isolates dose-dependently (10-100 microg ml(-1)) with maximum inhibition occurring after 60 min incubation. Adding fresh histatin 3 after 60 min caused further reduction in the viable cell count. Higher histatin 3 concentrations (50-100 microg ml(-1)) and prolonged exposure to peptide were required to inhibit germination. Histatin 3 was rapidly degraded in rabbit submandibular gland saliva and this may explain why fresh addition of histatin 3 increases candidacidal activity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.femsle.2005.01.045DOI Listing

Publication Analysis

Top Keywords

antifungal activity
8
histatin candida
8
candida albicans
8
rabbit submandibular
8
submandibular gland
8
gland saliva
8
microg ml-1
8
histatin
7
saliva antifungal
4
activity exogenously
4

Similar Publications

The lack of clinical breakpoints and epidemiological cut-off values (ECOFFs) for antifungals prescribed for vulvovaginal candidiasis (VVC) make interpretation of antifungal susceptibility data difficult. This leads to empirical prescribing, poor clinical management and emergence of resistance. The susceptibilities of 152 , 105 , 31 and 8 VVC isolates against eight antifungals, were determined according to the European Committee on Antimicrobial Susceptibility Testing (EUCAST) E.

View Article and Find Full Text PDF

Discovery of New Benzohydrazide Derivatives Containing 4-Aminoquinazoline as Effective Agricultural Fungicides, the Related Mechanistic Study, and Safety Assessment.

J Agric Food Chem

January 2025

State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China.

A total of 38 new benzohydrazide derivatives bearing the 4-aminoquinazoline moiety were designed and synthesized based on the active subunit combination approach and tested in detail for their inhibition activities against eight agricultural phytopathogenic fungi. The bioassay results indicated that many of the synthesized compounds exhibited extraordinary fungicidal activities in vitro against the tested fungi. For example, compounds , , , and had EC (half-maximal effective concentration) values of 0.

View Article and Find Full Text PDF

Eicosapentaenoic acid as an antibiofilm agent disrupts mature biofilms of .

Biofilm

June 2025

Department of Infectious Diseases and Clinical Microbiology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.

The biofilm formation of , a major human fungal pathogen, represents a crucial virulence factor during candidiasis. Eicosapentaenoic acid (EPA), a polyunsaturated fatty acid, has emerged as a potential antibiofilm agent against . .

View Article and Find Full Text PDF

SidF, a dual substrate N5-acetyl-N5-hydroxy-L-ornithine transacetylase involved in siderophore biosynthesis.

J Struct Biol X

June 2025

Bioorganic Chemistry and Bio-Crystallography Laboratory (B2Cl) Faculty of Agricultural, Environmental and Food Sciences, Libera Università di Bolzano, Piazza Università, 1, 39100 Bolzano, Italy.

Siderophore-mediated iron acquisition is essential for the virulence of , a fungus causing life-threatening aspergillosis. Drugs targeting the siderophore biosynthetic pathway could help improve disease management. The transacetylases SidF and SidL generate intermediates for different siderophores in .

View Article and Find Full Text PDF

Chirality plays a crucial role in the pharmacological activity of triazoles, a key scaffold in antifungal agents and various therapeutic applications. This study focuses on optimizing the enantiomeric resolution of chiral triazoles using supercritical fluid chromatography (SFC) and 10 different columns, either immobilized or coated, chlorinated or nonchlorinated, cellulose or amylose-based chiral stationary phases (CSPs). Four novel triazoles and two marketed ones (tebuconazole and hexaconazole) were separated to determine optimal resolution conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!