The nuclear transcription factor kappaB (NF-kappaB) is a cytoplasmic dimer that, as the family of mitogen-activated protein kinase (MAPK), can directly regulate the expression of early genes and genes involved in the stress response, following a variety of physiological or pathological stimuli. Both of them stimulate the transcription of many proteins, which are considered important during inflammation. A crucial role has been assigned to these factors in cellular proliferation and in neointimal hyperplasia secondary to the endothelial lesion of arterial vessels. On the other hand, it has been described that neomycin can have an inhibitory function on tumor cell proliferation, through the inhibition of different intracellular pathways of signaling, among them the NF-kappaB and MAPK pathways. Rat common carotid artery was subjected to balloon angioplasty. Neomycin sulfate (18 mg) was applied using pluronic acid gel on the adventitial surface of the injured vessel. MAPK and NF-kappaB activation was quantified after 24 hours with immunohistochemical staining. Neointimal formation was quantified after 14 days with morphometry. Immunohistochemistry results demonstrating MAPK and NF-kappaB activation reveal that both transcription factors are activated in the media of the control vessel wall. In contrast, the immunoreactivity for MAPK and NF-kappaB in the sections obtained from arteries treated with neomycin over 24 hours was insufficient or nonexistent. Treatment with neomycin on adventitia over 14 days in arteries on which angioplasty was performed shows a neointimal index (intimal area/medial area) decrease of 71% in comparison with arteries that were not treated. The adventitial neomycin treatment over 14 days produces a very significant increase (287.5%; p<0.0001) in the arterial luminal circumference in comparison with arteries treated with vehicle. These results support the theory that neomycin plays an important role against neointimal hyperplasia through the inhibition of MAPK and NF-kappaB activation.

Download full-text PDF

Source
http://dx.doi.org/10.1179/016164104X5110DOI Listing

Publication Analysis

Top Keywords

mapk nf-kappab
12
nf-kappab mapk
8
mapk pathways
8
neointimal hyperplasia
8
nf-kappab activation
8
arteries treated
8
neomycin
6
nf-kappab
6
mapk
6
perivascular delivery
4

Similar Publications

Chrysoeriol: a natural RANKL inhibitor targeting osteoclastogenesis and ROS regulation for osteoporosis therapy.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

The Key Laboratory of Spine and Spinal Cord Disease of Jiangxi Province, Nanchang, 330006, China.

Chrysoeriol (CHE) is a naturally occurring compound with established anti-inflammatory and anti-tumor effects. This study examines its potential role in regulating osteoclast differentiation and activity, both of which are crucial for bone remodeling. Computational docking revealed high binding affinity between CHE and RANKL, specifically at the Lys-181 residue of RANKL, suggesting potential inhibitory interactions on osteoclastogenesis.

View Article and Find Full Text PDF

Cucurbitacin IIb mitigates concanavalin A-induced acute liver injury by suppressing M1 macrophage polarization.

Int Immunopharmacol

January 2025

Institute of Immunology and Molecular Medicine, Jining Medical University, Jining 272067, China. Electronic address:

Cucurbitacins are a class of triterpenoid compounds extracted from plants and possess various pharmacological applications. Cucurbitacin IIb (CuIIb), extracted from the medicinal plant Hemsleya amabilis (Cucurbitaceae), has served as a traditional Chinese medicine for the treatment of bacterial dysentery and intestinal inflammation. CuIIb has been shown to exhibit anti-inflammatory activity; however, the protective effect of CuIIb against concanavalin A (Con A)-induced acute liver injury (ALI) and the fundamental mechanism remain unelucidated.

View Article and Find Full Text PDF

Kaempferol: Unveiling its anti-inflammatory properties for therapeutic innovation.

Cytokine

January 2025

College of technical engineering, the Islamic University, Najaf, Iraq; College of technical engineering, The Islamic University of Al Diwaniyah, Diwaniya, Iraq; College of technical engineering, The Islamic University of Babylon, Hillah, Iraq.

Inflammation, driven by various stimuli such as pathogens, cellular damage, or vascular injury, plays a central role in numerous acute and chronic conditions. Current treatments are being re-evaluated, prompting interest in naturally occurring compounds like kaempferol, a flavonoid prevalent in fruits and vegetables, for their anti-inflammatory properties. This study explores the therapeutic potential of kaempferol, focusing on its ability to modulate pro-inflammatory cytokines and its broader effects on inflammatory signaling pathways.

View Article and Find Full Text PDF

Nucleus-translocated GCLM promotes chemoresistance in colorectal cancer through a moonlighting function.

Nat Commun

January 2025

Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China.

Metabolic enzymes perform moonlighting functions during tumor progression, including the modulation of chemoresistance. However, the underlying mechanisms of these functions remain elusive. Here, utilizing a metabolic clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 knockout library screen, we observe that the loss of glutamate-cysteine ligase modifier subunit (GCLM), a rate-limiting enzyme in glutathione biosynthesis, noticeably increases the sensitivity of colorectal cancer (CRC) cells to platinum-based chemotherapy.

View Article and Find Full Text PDF

To investigate the anti-inflammatory effects of collagen peptides, collagen peptides from cod skin were prepared to assess their in vitro anti-inflammatory effects and in vivo efficacy against ulcerative colitis. The results show that collagen peptides demonstrated anti-inflammatory effects by inhibiting the secretion of pro-inflammatory cytokines and reducing oxidative stress in vitro. In vivo, collagen peptides significantly reduced colonic tissue damage, modulated serum cytokine balance, increased the expression of tight junction proteins ZO-1, Occludin, and Claudin-1 in colon tissue, enhanced the abundance of beneficial bacteria while reducing harmful bacteria, and restored microbial balance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!