Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The effects of trees and contamination on microbial metabolic activity, especially that of hydrocarbon degrading bacteria, were compared during phytoremediation to find which conditions increase diesel fuel removal. Diesel fuel utilisation, microbial extracellular enzyme activities and utilisation of Biolog ECO plate carbon sources by soil bacteria were determined during phytoremediation experiments consisting of two separate diesel applications. Diesel fuel removal after 28 days of second diesel application was 20-30% more than after the first application 1 year earlier. Soil microbiota utilised 26-31 of the 31 Biolog ECO plate carbon sources. Carbon source utilisation profiles indicated minor differences in microbiota in soil vegetated with pine compared to microbiota in soil vegetated with poplar. The potential maximum rates of aminopeptidase activity were 10-10(2) microM AMC/h/g dry soil prior to and after second diesel application, except 14 days after the second diesel addition, where the rates were at the scale of 10(3) microM AMC/h/g dry soil. The potential maximum rates of esterase activity were 10(3)-10(4) microM MUF/h/g dry soil. The presence of plants did not influence the activity of esterases. The utilisation of diesel by soil bacteria in Biolog MT2 plate assay was higher in contaminated soil, especially when vegetated, than in uncontaminated soil, measured both as lag times and maximum specific utilisation rates. MT2 plate assay detected the biological response after diesel fuel addition better than general activity methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10531-004-0626-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!