Division of the plant cell relies on the preprophase band of microtubules (PPB)-phragmoplast system. Cells of onion (Allium cepa L.) root meristems were rendered binucleate by preventing the consolidation of cell plate formation in telophase with 5 mM caffeine. These binucleates developed either a single PPB around one of their two nuclei or two PPBs, one per nucleus, in the prophase of the ensuing mitosis. Prophase cells developing one single PPB were shorter in length (42.3 +/- 4.1 microm) than those developing 2 PPBs (49.8 +/- 4.1 microm), and interphase duration was inversely related to cell length. Cells whose length was less than or equal to 42 microm, i.e., which had not even reached the mean size of the small binucleates in prophase, were followed throughout mitosis. In metaphase, they always assembled two mitotic spindles (one per nucleus). However, the cells that had assembled a single PPB also developed a single phragmoplast in telophase, leading to polyploidization. As these meristematic cells were not wide enough to accommodate the midzones of both mitotic spindles in any single plane transversal to the cell elongation axis, the spindles tilted until their midzones formed a continuum where the single common phragmoplast assembled. Its position was thereby uncoupled from that of the preceding PPB. Subsequently, the chromosomes from two different half-spindles were included, by a common nuclear envelope, in a single tetraploid nucleus. Finally, the cytokinetic plate segregated the two tetraploid nuclei formed at each side of the phragmoplast into two independent sister cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00709-004-0060-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!