Cellobiose dehydrogenase purified from two different fungal sources was assessed for its ability to remove and/or reduce colour from pulp mill bleach plant effluent. Cellobiose dehydrogenase purified from Phanerochaete chrysosporium was shown to prefer acidic conditions and was consequently used to treat the acid effluent stream discharged from a pulp mill bleach plant, while an analogous enzyme originating from Humicola insolens preferred alkaline conditions, and was applied to the effluent discharged from the caustic sewer of the bleach plant. Both enzyme preparations were able to remove colour from their respective effluent sources to a comparable extent. Up to 50% of the effluent colour was removed within 4 days when treated under optimised conditions. Furthermore, it was also shown that this enzymatic approach was effective at removing colour generated by both softwood and hardwood resources. Mechanistically, it was shown that colour was removed from all molecular weight fractions, and the higher molecular weight material (>300 kDa) was concurrently preferentially degraded. Cellobiose dehydrogenase treatment of effluent did not target phenolic, stilbene, or alpha-carbonyl structures, but did affect the quinone content. Further investigations using model compounds confirmed these results, and subsequently showed that only the para-quinones with low substitution were reduced with cellobiose dehydrogenase.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bit.20419 | DOI Listing |
Chem Sci
January 2025
State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
Lytic polysaccharide monooxygenases (LPMOs) are a unique group of monocopper enzymes that exhibit remarkable ability to catalyze the oxidative cleavage of recalcitrant carbohydrate substrates, such as cellulose and chitin, by utilizing O or HO as the oxygen source. One of the key challenges in understanding the catalytic mechanism of LPMOs lies in deciphering how they activate dioxygen using diverse reductants. To shed light on this intricate process, we conducted in-depth investigations using quantum mechanical/molecular mechanical (QM/MM) metadynamics simulations, molecular dynamics (MD) simulations, and density functional theory (DFT) calculations.
View Article and Find Full Text PDFMicrob Cell Fact
December 2024
Department of Microbiology and Immunology, Faculty of Pharmacy, Delta University for Science and Technology, International Coastal Road, Gamasa, 11152, Egypt.
Bacterial biofilms pose significant challenges, from healthcare-associated infections to biofouling in industrial systems, resulting in significant health impacts and financial losses globally. Classic antimicrobial methods often fail to eradicate sessile microbial communities within biofilms, requiring innovative approaches. This review explores the structure, formation, and role of biofilms, highlighting the critical importance of exopolysaccharides in biofilm stability and resistance mechanisms.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
The Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
This study explores the effect of carbohydrate-binding module 1 (CBM1) and the linker on the function of auxiliary activity 9 (AA9) lytic polysaccharide monooxygenases (LPMOs), with a particular focus on monooxygenase activity, using different crystallinity celluloses and electron donors. The tested C1/C4-oxidizing AA9 LPMOs exhibited higher oxidase and peroxidase activities compared to those of the C4-oxidizing AA9 LPMOs. While the presence of CBM1 promoted cellulose-binding affinity, it reduced the oxidase activity of modular AA9 LPMOs.
View Article and Find Full Text PDFAppl Biochem Biotechnol
November 2024
Shandong Provincial Key Laboratory of Biosensors, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), No. 28789, Jingshi East Road, Licheng District, Jinan, 250103, Shandong, China.
The development of an efficient lactose biosensor employing cellobiose dehydrogenases (CDHs) for monitoring and precise control of the lactose levels in dairy-based products is extremely important for the health of lactose-intolerant population. In this study, the mesophilic (Nc_CDH) and thermophilic (Ct_CDH-A, Ct_CDH-B) CDHs were successfully obtained by heterologous expression and treated with α-1,2-mannosidase and endoglycosidase H to prepare the deglycosylated forms (Nc_dCDH, Ct_dCDH-A, and Ct_dCDH-B); then, the effects of deglycosylation on the catalytic activity in solution and electrochemical performance on electrodes for lactose detection were systematically investigated. In solution, Nc_dCDH was more stable and had a higher V value and lower K value than Nc_CDH at different temperatures and pH values.
View Article and Find Full Text PDFJ Agric Food Chem
November 2024
School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!