Microfluidic operations using deformable polymer membranes fabricated by single layer soft lithography.

Lab Chip

Precision Biology, CTM/Intel Research, Intel Corp., 2200 Mission College Blvd., Santa Clara, CA 95054, USA.

Published: March 2005

We show that it is possible to use single layer soft lithography to create deformable polymer membranes within microfluidic chips for performing a variety of microfluidic operations. Single layer microfluidic chips were designed, fabricated, and characterized to demonstrate pumping, sorting, and mixing. Flow rates as high as 0.39 microl min(-1) were obtained by peristaltic pumping using pneumatically-actuated membrane devices. Sorting was attained via pneumatic actuation of membrane units placed alongside the branch channels. An active mixer was also demonstrated using single-layer deformable membrane units.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b500792pDOI Listing

Publication Analysis

Top Keywords

single layer
12
microfluidic operations
8
deformable polymer
8
polymer membranes
8
layer soft
8
soft lithography
8
microfluidic chips
8
membrane units
8
microfluidic
4
operations deformable
4

Similar Publications

Analytical Model for Atomic Relaxation in Twisted Moiré Materials.

Phys Rev Lett

December 2024

National University of Singapore, Department of Materials Science and Engineering, 9 Engineering Drive 1, Singapore 117575.

By virtue of being atomically thin, the electronic properties of heterostructures built from two-dimensional materials are strongly influenced by atomic relaxation. The atomic layers behave as flexible membranes rather than rigid crystals. Here we develop an analytical theory of lattice relaxation in twisted moiré materials.

View Article and Find Full Text PDF

Development of a novel molecular probe for visualizing mesothelin on the tumor via positron emission tomography.

Eur J Nucl Med Mol Imaging

January 2025

Institute of Radiation Medicine, Fudan University, Xietu Road 2094, Shanghai, 200032, China.

Objectives: Mesothelin (MSLN) is an antigen that is overexpressed in various cancers, and its interaction with tumor-associated cancer antigen 125 plays a multifaceted role in tumor metastasis. The serum MSLN expression level can be detected using enzyme-linked immunosorbent assay; however, non-invasive visualization of its expression at the tumor site is currently lacking. Therefore, the aim of this study was to develop a molecular probe for imaging MSLN expression through positron emission tomography (PET).

View Article and Find Full Text PDF

A novel cellulose-derived graphite carbon/ZnO composite by atomic layer deposition as an over-wideband microwave absorbent.

Phys Chem Chem Phys

January 2025

Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, P. R. China.

It is a major challenge to obtain broadband microwave absorption (MA) properties using low dielectric or magnetic nanoparticle-decorated carbon composites due to the limited single conductive loss or polarization loss of the carbon materials used as substrates. Novel pure cellulose-derived graphite carbon (CGC) materials can be used as an exceptional substrate option due to their special defective graphitic carbon structure, which provides both conduction and polarization loss. Herein, CGC@ZnO composites were first synthesized by atomic layer deposition (ALD) for use as microwave absorbents.

View Article and Find Full Text PDF

We synthesized rigid, macromolecular brushes with well-defined and quantized brush lengths on a gold nanoparticle substrate by using a macromolecular "grafting from" approach. The macromonomers used in these brushes were thiol- and maleimide-functionalized peptide coiled coil "bundlemers" that fold into discrete 4 nm × 2 nm (length × diameter) cylindrical nanoparticles. With each added peptide macromonomer layer, brush thickness increased by approximately the length of a single bundlemer nanoparticle.

View Article and Find Full Text PDF

Surface immobilization of single atoms on heteroatom-doped carbon nanospheres through phenolic-mediated interfacial anchoring for highly efficient biocatalysis.

Chem Sci

January 2025

BMI Center for Biomass Materials and Nanointerfaces, National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, College of Biomass Science and Engineering, Sichuan University Chengdu Sichuan 610065 China

Single-atom catalysts (SACs) dispersed on support materials exhibit exceptional catalytic properties that can be fine-tuned through interactions between the single atoms and the support. However, selectively controlling the spatial location of single metal atoms while simultaneously harmonizing their coordination environment remains a significant challenge. Here, we present a phenolic-mediated interfacial anchoring (PIA) strategy to prepare SACs with Fe single atoms anchored on the surface of heteroatom-doped carbon nanospheres.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!