Highly efficient, selective and recyclable palladium catalyst systems for hydroesterification of styrene and vinyl acetate were realized by using 1,2-bis(di-tert-butylphosphinomethyl)benzene as ligand and polymeric sulfonic acids of limited SO(3)H loadings as promoter.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b414646hDOI Listing

Publication Analysis

Top Keywords

palladium catalyst
8
hydroesterification styrene
8
styrene vinyl
8
vinyl acetate
8
polymeric sulfonic
8
sulfonic acids
8
highly active
4
active selective
4
selective palladium
4
catalyst hydroesterification
4

Similar Publications

CO2-based hydroesterification is an attractive route to produce value added ester compounds, which could replace CO-based hydroesterification processes if sufficient catalytic technologies are developed. One path to CO2-based hydroesterification is through an organoformate intermediate, which is then used in olefin hydroesterification to generate the desirable esters.  This route creates a net CO2-based hydroesterification process using tandem catalytic systems for CO2 hydrogenation to organoformate paired with formate-olefin hydroesterification.

View Article and Find Full Text PDF

An overview of palladium-catalyzed -alkylation reactions.

Org Biomol Chem

January 2025

Institute for Integrated Programmes and Research in Basic Sciences (IIRBS), Mahatma Gandhi University, Priyadarsini Hills P O, Kottayam, Kerala 686 560, India.

-Alkylation of amines is a vital reaction in the synthesis of numerous bioactive compounds and materials. Among transition metals, palladium has emerged as a particularly effective catalyst for these transformations. The unique advantages of palladium arise from its superior catalytic efficiency, ability to operate under mild conditions, high selectivity and recyclability.

View Article and Find Full Text PDF

Palladium-catalyzed -arylation of (hetero)aryl chlorides with pyrroles and their analogues.

Org Biomol Chem

January 2025

School of Chemistry and Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, Guangxi, P. R. China.

We present a mild and efficient method for the arylation of N-H heteroarenes using a low-loading Pd/keYPhos catalyst (0.8 mol%). This approach employs inexpensive and structurally diverse aryl chlorides as electrophiles in reactions with indoles, pyrroles, and carbazole, enabling the construction of a wide range of -arylated products.

View Article and Find Full Text PDF

Diatomic Palladium Catalyst for Enhanced Photocatalytic Water-Donating Transfer Hydrogenation.

J Am Chem Soc

January 2025

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Jiangsu Province Key Laboratory of Green Biomass-Based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, People's Republic of China.

Diatomic catalysts (DACs) present unique opportunities for harnessing ensemble effects between adjacent metal atoms, thus, expanding the properties of single-atom catalysts (SACs). However, the precise preparation and characterization of this type of catalyst remains challenging. Following a precursor-preselected strategy, here, we report the synthesis of a carbon nitride-supported Pd-DAC, which achieves an excellent yield of 92% for photocatalytic water-donating transfer hydrogenation of 4-vinylphenol to 4-ethylphenol, far exceeding that of other metal species, including Pd single atoms (47%) and nanoparticles (1%).

View Article and Find Full Text PDF

Palladium-Catalyzed Solvent-Controlled Divergent C2/C5 Site-Selective Alkynylation of Pyrrole Derivatives.

J Org Chem

January 2025

Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China.

Among the known aromatic -heterocycles, pyrroles are significant and versatile privileged components in pharmacologically relevant molecules. Herein, we demonstrate a protocol for the selective construction of alkynylated pyrroles in a diversity-oriented fashion through divergent C2/C5 site-selective alkynylation of pyrrole derivatives by employing a palladium catalyst with two different solvent systems. In the presence of 1,4-dioxane, the C2-alkynylation process via chelation-assisted palladation is favored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!