Transcript copy number of genes for DNA repair and translesion synthesis in yeast: contribution of transcription rate and mRNA stability to the steady-state level of each mRNA along with growth in glucose-fermentative medium.

DNA Repair (Amst)

Departamento de Bioquímica y Biología Molecular, Campus de Rabanales, edificio Severo Ochoa, planta 2a, Carretera Madrid-Cádiz Km 396-a, Universidad de Córdoba, 14071-Córdoba, Spain.

Published: April 2005

We quantitated the copy number of mRNAs (NTG1, NTG2, OGG1, APN1, APN2, MSH2, MSH6, REV3, RAD30) encoding different DNA repair enzymes and translesion-synthesis polymerases in yeast. Quantitations reported examine how the steady-state number of each transcript is modulated in association with the growth in glucose-fermentative medium, and evaluate the respective contribution of the rate of mRNA degradation and transcription initiation to the specific mRNA level profile of each gene. Each transcript displayed a unique growth-related profile, therefore altering the relative abundance of mRNAs coding for proteins with similar functions, as cells proceed from exponential to stationary phase. Nonetheless, as general trend, they exhibited maximal levels when cells proliferate rapidly and minimal values when cells cease proliferation. We found that previous calculations on the stability of the investigated mRNAs might be biased, in particular regarding those that respond to heat shock stress. Overall, the mRNAs experienced drastic increments in their stabilities in response to gradual depletion of essential nutrients in the culture. However, differences among the mRNA stability profiles suggest a dynamic modulation rather than a passive process. As general rule, the investigated genes were much more frequently transcribed during the fermentative growth than later during the diauxic arrest and the stationary phase, this finding conciliating low steady-state levels with increased mRNA stabilities. Interestingly, while the rate at which each gene is transcribed appeared as the only determinant of the number of mRNA copies at the exponential growth, later, when cell growth is arrested, the rate of mRNA degradation becomes also a key factor for gene expression. In short, our results raise the question of how important the respective contribution of transcription and mRNA stability mechanisms is for the steady-state profile of a given transcript, and how this contribution may change in response to nutrient-availability.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.dnarep.2004.12.001DOI Listing

Publication Analysis

Top Keywords

rate mrna
12
mrna stability
12
mrna
9
copy number
8
dna repair
8
contribution transcription
8
growth glucose-fermentative
8
glucose-fermentative medium
8
respective contribution
8
mrna degradation
8

Similar Publications

To investigate the role of silent information regulator 6 (SIRT6) in regulating podocyte injury in diabetic nephropathy (DN) through autophagy mediated by Notch signaling pathway. A blank control group (group A), a diabetic nephropathy group (group B), and a Sirt6 intervention group (group C) were established. The group A cells were human normal glomerular podocyte cell lines (HGPCs) without any treatment.

View Article and Find Full Text PDF

Novel variants of FSIP2 and SPEF2 cause varying degrees of spermatozoa damage in MMAF patients and favorable ART outcomes.

J Assist Reprod Genet

January 2025

NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha, China.

Purpose: This study identified novel variants of the FSIP2 and SPEF2 genes in multiple morphological abnormalities of the sperm flagella (MMAF) patients and to investigate the potential effect of variations on male infertility and assisted reproductive outcomes.

Methods: Whole-exome sequencing was performed in 106 Chinese MMAF patients. The discovered variants were evaluated in silico and confirmed by Sanger sequencing.

View Article and Find Full Text PDF

This study evaluated the effect of wheat germ oil (WGO), Bacillus subtilis, and their combination on growth performance, immune response, nutrient digestibility, intestinal microbial, oxidative status, and gene expression in heat-stressed broilers. Four hundred one-day-old male Ross 308 broilers were distributed into five pens (20 birds/pen) in four experimental groups: a control (CON) without additives, WGO group fed diet with WGO at 200 mg.kg, BS group fed diet with B.

View Article and Find Full Text PDF

This study assessed the feasibility of miR17 ~ 92-based antiresorptive strategy by determining the effects of conditional transgenic (cTG) overexpression of miR17 ~ 92 in myeloid cells on bone and osteoclasts. Osteoclasts of male and female cTG mutant mice each showed 3- to fivefold overexpression of miR17 ~ 92 cluster genes compared to those of age- and sex-matched wildtype (WT) littermates. Male but not female cTG mutant mice had more trabecular and cortical bones as well as lower bone resorption reflected by reduction in osteoclast number and resorbing surface.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Fujirebio Europe N.V., Ghent, Belgium.

Background: Apolipoprotein E (APOE) ε4 is a significant genetic risk factor for late-onset Alzheimer's Disease and appears to be closely related with brain amyloidosis. Current identification methods for APOE ε4 carriers are mostly based on genotyping which cannot always predict the specific ApoE protein isoform. We present a case study of a sample with a discordant result for genotype compared to the protein isoform (proteotype) and we reflect on possible implications for future applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!