Fibroblast growth factor-2 (FGF-2) is a growth and survival factor whose expression is elevated in many hematopoietic malignancies. A natural antisense RNA (FGF-AS) has been implicated in the posttranscriptional regulation of FGF-2 mRNA expression. We demonstrate for the first time that FGF sense and antisense RNAs are coordinately expressed and translated in hematopoietic cells and tissues. Cytokine stimulation of growth-arrested K562 cells elicited a rapid transient increase in FGF-AS mRNA expression followed by a slower but sustained increase in FGF-2 mRNA. This was accompanied by a marked increase in the expression and nuclear translocation of FGF-2 and the FGF-AS encoded protein, GFG/NUDT6. These findings suggest a role for both FGF-2 and GFG proteins in the cell survival and proliferation of lymphoid and myeloid tumor cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.leukres.2004.09.006 | DOI Listing |
Stem Cell Res Ther
January 2025
College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China.
Background: The aging of bone marrow mesenchymal stem cells (BMSCs) impairs bone tissue regeneration, contributing to skeletal disorders. LncRNA NEAT1 is considered as a proliferative inhibitory role during cellular senescence, but the relevant mechanisms remain insufficient. This study aims to elucidate how NEAT1 regulates mitotic proteins during BMSCs aging.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Department of Ophthalmology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China.
Purpose: Ocular neovascularization is a major cause of blindness. Although fibroblast growth factor-2 (FGF2) has been implicated in the pathophysiology of angiogenesis, the underlying mechanisms remain incompletely understood. The purpose of this study was to investigate the role of FGF2 in retinal neovascularization and elucidate its underlying mechanisms.
View Article and Find Full Text PDFCells
January 2025
Meakins-Christie Laboratories, Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada.
Angiopoietin-1 (Ang-1) and its receptor Tie-2 promote vascular integrity and angiogenesis. MicroRNAs (miRNAs) are involved in the regulation of many cellular functions, including endothelial cell (EC) survival, proliferation, and differentiation. Several reports indicate that these effects of miRNAs on EC functions are mediated through the modulation of angiogenesis factor signaling including that of vascular endothelial growth factor (VEGF).
View Article and Find Full Text PDFCells
January 2025
Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell'Elce di Sotto 8, 06123 Perugia, Italy.
Matrix Biol
January 2025
Department of Anatomy and Cell Biology, Dentistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, N6A 3K7, Canada; Dentistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, N6A 3K7, Canada. Electronic address:
Release of growth factors in the tissue microenvironment is a critical process in the repair and regeneration of periodontal tissues, regulating fibroblast behavior and phenotype. As a result of the complex architecture of the periodontium, distinct fibroblast populations in the periodontal ligament and gingival connective tissue exist in close proximity. Growth factor therapies for periodontal regeneration have gained traction, but quantification of their effects on multiple different fibroblast populations that are required for repair has been poorly investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!