Pluripotent, self-renewing, hematopoietic stem cells are considered good targets for gene modification to treat a wide variety of disorders. However, as many genes are expressed in a stage-specific manner during the course of hematopoietic development, it is necessary to establish a lineage-specific gene expression system to ensure the proper expression of transduced genes in hematopoietic stem cells. In this study, we constructed a VSV-G-pseudotyped, human immunodeficiency virus type 1-based, self-inactivating lentivirus vector that expressed green fluorescent protein (GFP) under the control of the human CD41 (glycoprotein 2b; GP2b) promoter; this activity is restricted to megakaryocytic lineage cells. The recombinant virus was used to infect human peripheral blood CD34+ (hematopoietic stem/progenitor) cells, and lineage-specific gene expression was monitored with GFP measurements. The analysis by FACS determined that GFP expression driven by the GP2b promoter was restricted to megakaryocytic progenitors and was not present in erythrocytes. Furthermore, in the hematopoietic colony-forming assay, GFP expression was restricted to colony-forming units-megakaryocyte (CFU-Meg) colonies under the control of the GP2b promoter, whereas all myeloid colonies (burst-forming units-erythroid, colony-forming units-granulocyte-macrophage, and CFU-Meg) expressed GFP when the transgene was regulated by the cytomegalovirus promoter. These results demonstrated lineage-specific expression after gene transduction of hematopoietic stem cells. The application of this vector system should provide a useful tool for gene therapy to treat disorders associated with megakaryocyte (platelet) dysfunction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.micinf.2004.11.003 | DOI Listing |
Commun Biol
January 2025
Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA.
Symbioses are major drivers of organismal diversification and phenotypic innovation. However, how long-term symbioses shape whole genome evolution in metazoans is still underexplored. Here, we use a giant clam (Tridacna maxima) genome to demonstrate how symbiosis has left complex signatures in an animal's genome.
View Article and Find Full Text PDFNat Commun
January 2025
Goethe University Frankfurt, Institute for Cardiovascular Physiology, Frankfurt, Germany.
The coordination of chromatin remodeling is essential for DNA accessibility and gene expression control. The highly conserved and ubiquitously expressed SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complex plays a central role in cell type- and context-dependent gene expression. Despite the absence of a defined DNA recognition motif, SWI/SNF binds lineage specific enhancers genome-wide where it actively maintains open chromatin state.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Life Science Institute, University of Michigan, Ann Arbor, MI, USA.
Cell lineage analysis is primarily undertaken to understand cell fate specification and diversification along a cell lineage tree. Built with dual repressible markers, twin-spot mosaic analysis with repressible cell markers (MARCM) labels the two daughter cells made by a common precursor in distinct colors. The power of twin-spot MARCM to systematically subdivide complex lineages is exemplified in studies of Drosophila neural stem-cell lineages.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
January 2025
Division of Cardiology, Department of Medicine, University of Washington (S.S., S.J., N.S., C.Y.L., L.L., D.A.D.).
HGG Adv
December 2024
Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN; Clare Hall, University of Cambridge, Cambridge, England. Electronic address:
Single-cell transcriptome data can provide insights into how genetic variation influences biological processes involved in human biology and disease. However, the identification of gene-level associations in distinct cell types faces several challenges, including the limited reference resource from population scale studies, data sparsity in single-cell RNA sequencing, and the complex cell state pattern of expression within individual cell types. Here we develop genetic models of cell type specific and cell state adjusted gene expression in mid-brain neurons in the process of specializing from induced pluripotent stem cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!