Background: parkin mutations are a common cause of parkinsonism. Possessing two parkin mutations leads to early-onset parkinsonism, while having one mutation may predispose to late-onset disease. This dosage pattern suggests that some parkin families should exhibit intergenerational variation in age at onset resembling anticipation. A subset of familial PD exhibits anticipation, the cause of which is unknown. The aim of this study was to determine if anticipation was due to parkin mutation dosage.
Methods: We studied 19 kindreds that had early-onset parkinsonism in the offspring generation, late-onset parkinsonism in the parent generation, and > or = 20 years of anticipation. We also studied 28 early-onset parkinsonism cases without anticipation. Patients were diagnosed by neurologists at a movement disorder clinic. parkin analysis included sequencing and dosage analysis of all 12 exons.
Results: Only one of 19 cases had compound parkin mutations, but contrary to our postulate, the affected relative with late-onset parkinsonism did not have a parkin mutation. In effect, none of the anticipation cases could be attributed to parkin. In contrast, 21% of early-onset parkinsonism patients without anticipation had parkin mutations.
Conclusion: Anticipation is not linked to parkin, and may signify a distinct disease entity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC551608 | PMC |
http://dx.doi.org/10.1186/1471-2377-5-4 | DOI Listing |
NPJ Parkinsons Dis
January 2025
Department of Life Sciences and Medicine (DLSM), University of Luxembourg, Belvaux, Luxembourg.
Loss-of-function mutations in PARK7, encoding for DJ-1, can lead to early onset Parkinson's disease (PD). In mice, Park7 deletion leads to dopaminergic deficits during aging, and increased sensitivity to oxidative stress. However, the severity of the reported phenotypes varies.
View Article and Find Full Text PDFParkinsonism Relat Disord
December 2024
Department of Neurology, Medical University of Vienna, Vienna, Austria; Comprehensive Center for Clinical Neurosciences & Mental Health, Medical University of Vienna, Vienna, Austria. Electronic address:
Background: Variants in the UQCRC1 gene have been proposed to cause autosomal dominant Parkinson's disease with neuropathy. However, definitive confirmation of UQCRC1 as an authentic Parkinson's gene remains elusive, as follow-up studies have not yet provided conclusive evidence.
Methods: 382 Austrian Parkinson's patients, particularly selected for familial and/or early onset cases, were Exome sequenced.
Alzheimers Dement
December 2024
Memory & Aging Center, Department of Neurology, University of California in San Francisco, San Francisco, CA, USA.
Background: Lewy body disease (LBD) often co-occurs with Alzheimer's (AD), resulting in more significant cognitive decline than AD or LBD alone. LBD's hallmarks, asyn-positive Lewy bodies and neurites, propagate from the enteric system or olfactory bulb to the amygdala, which acts as a gatekeeper for spread to other structures. Initially, LBD appears in the central or cortical nuclei, reflecting brainstem or olfactory origins.
View Article and Find Full Text PDFAnn Neurol
December 2024
Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo, Japan.
Objective: Variants in PRKN and PINK1 are the leading cause of early-onset autosomal recessive Parkinson's disease, yet many cases remain genetically unresolved. We previously identified a 7 megabases complex structural variant in a pair of monozygotic twins using Oxford Nanopore Technologies (ONT) long-read sequencing. This study aims to determine if ONT long-read sequencing can detect a second variant in other unresolved early-onset Parkinson's disease (EOPD) cases with 1 heterozygous PRKN or PINK1 variant.
View Article and Find Full Text PDFAutophagy
December 2024
Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montreal, QC, Canada.
Parkinson disease (PD) is a neurodegenerative disease characterized by the loss of dopaminergic neurons in the , primarily due to mitochondria dysfunction. PRKN (parkin RBR E3 ubiquitin protein ligase) and PINK1 (PTEN induced kinase 1) are linked to early-onset cases of PD and essential for the clearance of damaged mitochondria via selective mitochondrial autophagy (mitophagy). In a recent publication, we detail how a small molecule can activate PRKN mutants that are unable to be phosphorylated, restoring mitophagy in cellular assays.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!