Fushi tarazu factor 1 (Ftz-F1, NR5A) is a zinc-finger transcription factor that belongs to the nuclear receptor superfamily and regulates genes that are involved in sterol and steroid metabolism in gonads, adrenals, liver and other tissues. To understand the evolutionary origins and developmental genetic relationships of the Ftz-F1 genes, we have cloned four homologous Ftz-f1 genes in zebrafish, called ff1a, ff1b, ff1c and ff1d. These four genes have different temporal and spatial expression patterns during development, indicating that they have distinct mechanisms of genetic regulation. Among them, the ff1a expression pattern is similar to mammalian Nr5a2, while the ff1b pattern is similar to that of mammalian Nr5a1. Genetic mapping experiments show that these four ff1 genes are located on chromosome segments conserved between the zebrafish and human genomes, indicating a common ancestral origin. Phylogenetic and conserved synteny analysis show that ff1a is the orthologue of NR5A2, and that ff1b and ff1d genes are co-orthologues of NR5A1 that arose by a gene-duplication event, probably a whole-genome duplication, in the ray-fin lineage, and each gene is located next to an NR6A1 co-orthologue as in humans, showing that the tandem duplication occurred before the divergence of human and zebrafish lineages. ff1c does not have a mammalian counterpart. Thus we have characterized the phylogenetic relationships, expression patterns and chromosomal locations of these Ftz-F1 genes, and have demonstrated their identities as NR5A genes in relation to the orthologous genes in other species.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1184535 | PMC |
http://dx.doi.org/10.1042/BJ20050005 | DOI Listing |
BMC Genomics
October 2024
MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Shandong/Sanya, Hainan, 266100/572025, China.
J Agric Food Chem
September 2024
College of Plant Science, Jilin University, Changchun 130062, PR China.
Cytochrome P450 monooxygenases in insects have been verified to implicated in insecticide and phytochemical detoxification metabolism. However, the regulation of P450s, which are modulated by signal-regulated transcription factors (TFs), is less well studied in insects. Here, we found that the Malpighian tubule specific P450 gene in is induced by xenobiotics.
View Article and Find Full Text PDFInsect Mol Biol
July 2024
Agricultural Biotechnology and Chemical Ecology Research Laboratory, Department of Biology, Indian Institute of Science Education and Research, Pune, India.
MicroRNAs (miRNAs) are post-transcriptional gene regulators. In the miRNA pathway's cytoplasmic part, the miRNA is processed from a hairpin-structured precursor to a double-stranded (ds) mature RNA and ultimately to a single-stranded mature miRNA. In insects, ingesting these two ds forms can regulate the target gene expression; this inspired the trophic miRNA's use as a functional genomics and pest management tool.
View Article and Find Full Text PDFPest Manag Sci
November 2024
International Center for the Collaborative Management of Cross-border Pest in Central Asia, Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, Key Laboratory of Special Environment Biodiversity Application and Regulation in Xinjiang, College of Life Sciences, Xinjiang Normal University, Urumqi, China.
Background: Calliptamus italicus L. is a major pest in Xinjiang grassland. The diapause overwintering strategy is one of the important reasons for the large population of this pest.
View Article and Find Full Text PDFPest Manag Sci
October 2024
National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, P. R. China.
Background: Pyriproxyfen is an insect growth regulator (IGR) that is effective against various types of insect pests. However, the molecular mechanism underlying pyriproxyfen effects on insect reproduction remains unclear. Thus, in this study, we attempted to uncover the mechanisms underlying the impact of pyriproxyfen on the reproductive system of the model organism Drosophila melanogaster.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!