Since transforming growth factor-beta (TGF-beta) has been shown earlier to induce the chondrocyte phenotype in embryonic rat mesenchymal cells with production of cartilage-specific type II collagen and proteoglycans, it was of interest to determine whether the factor could also influence the differentiation state of articular chondrocytes maintained in monolayer culture. Using rabbit articular chondrocytes (RAC) in primary and passaged cultures, we demonstrate that the loss of the phenotype accompanying the subculture was not significantly influenced by the presence of TGF-beta. The factor exerted an inhibitory effect on collagen synthesis in a 6-day exposure of primary cultures whereas it stimulated that production throughout the subsequent passages. Steady-state levels of mRNAs encoding type I, II, and III procollagens were correlated with the amounts of cognate proteins produced, suggesting that both inhibition and stimulation were exerted at a transcriptional level. The pattern of proteoglycans produced in primary culture, essentially chondroitin sulfate-containing molecules, was altered by the subculture-induced RAC dedifferentiation, as shown by decrease in chondroitin sulfate formation and progressive appearance of hyaluronic acid. Contrasting with its effect on collagen synthesis, TGF-beta did not significantly change the proteoglycan production of RAC in our conditions whenever it was added at the beginning of the primary cultures or in the subsequent passages. Altogether, our data indicate that the effect of TGF-beta on RAC collagen synthesis depends on whether they are fully differentiated. Moreover, the data show that the factor does not prevent the loss of RAC phenotype but rather contributes to the dedifferentiation process since it exerts differential effects on the major components of extracellular matrix, collagen, and proteoglycans.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0014-4827(92)90186-c | DOI Listing |
Histochem Cell Biol
January 2025
Department of Forensic Medicine and Forensic Toxicology, Medical University of Silesia, 18 Medyków Street, 40-752, Katowice, Poland.
Cartilage diseases and injuries are considered difficult to treat owing to the low regenerative capacity of this tissue. Using stem cells (SCs) is one of the potential methods of treating cartilage defects and creating functional cartilage models for transplants. Their ability to proliferate and to generate functional chondrocytes, a natural tissue environment, and extracellular cartilage matrix, makes SCs a new opportunity for patients with articular injuries or incurable diseases, such as osteoarthritis (OA).
View Article and Find Full Text PDFBiomed Pharmacother
January 2025
Joseph Maxwell Cleland Atlanta VA Medical Center, Decatur, GA 30033, USA; Department of Orthopaedics, Emory Musculoskeletal Institute, Emory University, Atlanta, GA 30329, USA. Electronic address:
There is currently no cure or disease-modifying treatment for post-traumatic osteoarthritis (PTOA). This study aims to assess the efficacy of dimethyl fumarate (DMF), a US-FDA approved drug for multiple sclerosis, as a treatment for PTOA. PTOA was induced in male Lewis rats by medial meniscal transection (MMT) surgery, and DMF was intra-articularly administered once, one week following surgery.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22903, USA.
Osteoarthritis (OA) is a chronic disease characterized by cartilage degradation, leading to bone friction, inflammation, stiffness, pain, and reduced mobility. This study investigates the therapeutic effects of porcine-derived chondroitin sulfate sodium (CS) on OA symptoms at both cellular and animal levels. study, HTB-94 chondrocytes were treated with inflammatory stimuli and CS (10, 50, 100, and 200 μg/mL) to assess the release of inflammatory mediators and the expression of genes and proteins related to cartilage synthesis and degradation.
View Article and Find Full Text PDFMedicina (Kaunas)
December 2024
Faculty of Medicine, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu, 300041 Timisoara, Romania.
Cartilage repair remains a critical challenge in orthopaedic medicine due to the tissue's limited self-healing ability, contributing to degenerative joint conditions such as osteoarthritis (OA). In response, regenerative medicine has developed advanced therapeutic strategies, including cell-based therapies, gene editing, and bioengineered scaffolds, to promote cartilage regeneration and restore joint function. This narrative review aims to explore the latest developments in cartilage repair techniques, focusing on mesenchymal stem cell (MSC) therapy, gene-based interventions, and biomaterial innovations.
View Article and Find Full Text PDFArthritis Res Ther
January 2025
Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, Netherlands.
Objective: To explore IL11 co-expression profiles in our previously reported RNA-sequencing dataset of OA articular cartilage, in interaction with IL6, and to investigate the effects of hrIL11 administration as potential therapeutic strategy for OA articular cartilage using our biomimetic aged human osteochondral explant model of OA.
Methods: We used RNA-sequencing datasets of macroscopically preserved and lesioned OA articular cartilage (N = 35 patients). Spearman correlations were calculated between IL11 and IL6 expression levels and genes expressed in cartilage (N = 20048 genes).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!