The flagellum of Methanococcus voltae is composed of four structural flagellin proteins FlaA, FlaB1, FlaB2, and FlaB3. These proteins possess a total of 15 potential N-linked sequons (NX(S/T)) and show a mass shift on an SDS-polyacrylamide gel indicating significant post-translational modification. We describe here the structural characterization of the flagellin glycan from M. voltae using mass spectrometry to examine the proteolytic digests of the flagellin proteins in combination with NMR analysis of the purified glycan using a sensitive, cryogenically cooled probe. Nano-liquid chromatography-tandem mass spectrometry analysis of the proteolytic digests of the flagellin proteins revealed that they are post-translationally modified with a novel N-linked trisaccharide of mass 779 Da that is composed of three sugar residues with masses of 318, 258, and 203 Da, respectively. In every instance the glycan is attached to the peptide through the asparagine residue of a typical N-linked sequon. The glycan modification has been observed on 14 of the 15 sequon sites present on the four flagellin structural proteins. The novel glycan structure elucidated by NMR analysis was shown to be a trisaccharide composed of beta-ManpNAcA6Thr-(1-4)-beta-Glc-pNAc3NAcA-(1-3)-beta-GlcpNAc linked to Asn. In addition, the same trisaccharide was identified on a tryptic peptide of the S-layer protein from this organism implicating a common N-linked glycosylation pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M500329200DOI Listing

Publication Analysis

Top Keywords

flagellin proteins
12
methanococcus voltae
8
mass spectrometry
8
proteolytic digests
8
digests flagellin
8
nmr analysis
8
glycan
6
n-linked
5
flagellin
5
proteins
5

Similar Publications

Yersinia ruckeri is known to cause enteric red mouth disease (ERM) in channel catfish (Ictalurus punctatus). This study first established a model of Y. ruckeri-induced intestinal inflammation in channel catfish.

View Article and Find Full Text PDF

The global public health risk posed by Salmonella Kentucky (S. Kentucky) is rising, particularly due to the dissemination of antimicrobial resistance genes in human and animal populations. This serovar, widespread in Africa, has emerged as a notable cause of non-typhoidal gastroenteritis in humans.

View Article and Find Full Text PDF

Vibrio parahaemolyticus propels itself through liquids using a polar flagellum and efficiently swarms across surfaces or viscous environments with the aid of lateral flagella. H-NS plays a negative role in the swarming motility of V. parahaemolyticus by directly repressing the transcription of the lateral flagellin gene lafA.

View Article and Find Full Text PDF

Structural engineering of flagellin as vaccine adjuvant: quest for the minimal domain of flagellin for TLR5 activation.

Mol Biol Rep

January 2025

International Degree Program of Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, 1, Shuefu Road, Neipu, Pingtung, 91201, Taiwan.

Flagellin stimulates Toll-like receptor 5 (TLR5), triggering both innate and adaptive immune responses, making it a potential vaccine adjuvant. On mucosal surfaces, flagellin induces a strong release of cytokines, chemokines, and immunoglobulins. When used in its free monomeric form, flagellin has been shown to enhance immune responses when combined with vaccine antigens.

View Article and Find Full Text PDF

Tick-borne pathogens are growing in importance for human and veterinary research worldwide. We developed, optimized, and validated a reliable quantitative PCR (qPCR; real-time PCR) assay to assess Borrelia burgdorferi infection by targeting two B. burgdorferi genes, and .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!