In this report, we show how the in vitro model of mechanically injured confluent monolayers of cultured mammalian cells, consisting in denudation by gentle scraping of areas in the monolayer, can be extended to obtain patterned cell cultures without using preadded attaching matrices. This work was done with a sinusoidal endothelial liver cell line. Patterns for cell growth were drawn in confluent monolayers by cell detaching with the aid of pipette tips followed by reincubation of the culture. In one or some d, acellular patterns were closed by cell migration and proliferation. For unveiling the pattern formed by migration and cell duplication, an enzymatic digestion with trypsin-collagenase solution was applied; after some min, only the migrating and younger cells filling the previous acellular pattern remained attached to the dish, and the now cellular pattern was clearly depicted. After stopping and recovering from the enzymatic treatment, the culture was ready for starting studies such as those related to migration, proliferation, cell-cell interactions. This method allows us to create simple and complex patterns, does not require preparation of the dishes with attaching matrices, and extracellular matrices in acellular areas are absent because of the enzymatic treatment, thus, potentially having many applications in cell culture techniques.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1290/0406040.1 | DOI Listing |
Exp Hematol Oncol
January 2025
Department of Hematology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
Myelodysplastic Syndromes (MDS) represent a group of heterogeneous myeloid clonal diseases derived from aberrant hematopoietic stem/progenitor cells. Enhancer of zeste homolog 2 (EZH2) is an important regulator in gene expression through methyltransferase-dependent or methyltransferase-independent mechanisms. Herein, we found EZH2 inhibition led to MDS cell pyroptosis through RNA Helicase A (RHA) down-regulation induced overexpression of S100A9, a key regulator of inflammasome activation and pyroptosis.
View Article and Find Full Text PDFBioelectron Med
January 2025
School of Pharmacy, Biodiscovery Institute & Boots Science Building, University of Nottingham, Nottingham, NG7 2RD, UK.
Background: In glioblastoma (GBM) therapy research, tumour treating fields by the company Novocure™, have shown promise for increasing patient overall survival. When used with the chemotherapeutic agent temozolomide, they extend median survival by five months. However, there is a space to design alternative systems that will be amenable for wider use in current research.
View Article and Find Full Text PDFBiol Direct
January 2025
National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Jinan, China.
Background: Carotid atherosclerotic plaque is the primary cause of cardiovascular and cerebrovascular diseases. It is closely related to oxidative stress and immune inflammation. This bioinformatic study was conducted to identify key oxidative stress-related genes and key immune cell infiltration involved in the formation, progression, and stabilization of plaques and investigate the relationship between them.
View Article and Find Full Text PDFStem Cell Res Ther
January 2025
Department of Neurosurgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China.
Background: Closed head injury (CHI) provokes a prominent neuroinflammation that may lead to long-term health consequences. Microglia plays pivotal and complex roles in neuroinflammation-mediated neuronal insult and repair following CHI. We previously reported that induced neural stem cells (iNSCs) can block the effects of CXCL12/CXCR4 signaling on NF-κB activation in activated microglia by CXCR4 overexpression.
View Article and Find Full Text PDFRadiat Oncol
January 2025
Department of Radiotherapy and Radiooncology, Medical Faculty, Heinrich Heine University, Moorenstr. 5, 40225, Dusseldorf, Germany.
Background: Medulloblastoma is the most common malignant pediatric brain tumor, typically treated with normofractionated craniospinal irradiation (CSI) with an additional boost over about 6 weeks in children older than 3 years. This study investigates the sensitivity of pediatric medulloblastoma cell lines to different radiation fractionation schedules. While extensively studied in adult tumors, these ratios remain unknown in pediatric cases due to the rarity of the disease.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!