Cloning and characterization of mouse E2F8, a novel mammalian E2F family member capable of blocking cellular proliferation.

J Biol Chem

Human Cancer Genetics Program, Department of Molecular Virology, Immunology and Medical Genetics, and Department of Molecular Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA.

Published: May 2005

AI Article Synopsis

Article Abstract

The E2F transcription factor family plays a crucial and well established role in cell cycle progression. Deregulation of E2F activities in vivo leads to developmental defects and cancer. Based on current evidence in the field, mammalian E2Fs can be functionally categorized into either transcriptional activators (E2F1, E2F2, and E2F3a) or repressors (E2F3b, E2F4, E2F5, E2F6, and E2F7). We have identified a novel E2F family member, E2F8, which is conserved in mice and humans and has its counterpart in Arabidopsis thaliana (E2Ls). Interestingly, E2F7 and E2F8 share unique structural features that distinguish them from other mammalian E2F repressor members, including the presence of two distinct DNA-binding domains and the absence of DP-dimerization, retinoblastoma-binding, and transcriptional activation domains. Similar to E2F7, overexpression of E2F8 significantly slows down the proliferation of primary mouse embryonic fibroblasts. These observations, together with the fact that E2F7 and E2F8 can homodimerize and are expressed in the same adult tissues, suggest that they may have overlapping and perhaps synergistic roles in the control of cellular proliferation.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M501410200DOI Listing

Publication Analysis

Top Keywords

mammalian e2f
8
e2f family
8
family member
8
cellular proliferation
8
e2f7 e2f8
8
e2f8
5
e2f
5
cloning characterization
4
characterization mouse
4
mouse e2f8
4

Similar Publications

Emerging Role of the DREAM Complex in Cancer and Therapeutic Opportunities.

Int J Mol Sci

January 2025

Department of Life Science, Gachon University, Seongnam 13120, Republic of Korea.

The DREAM (dimerization partner, RB-like, E2F, and multi-vulval class B) complex is an evolutionarily conserved transcriptional repression complex that coordinates nearly one thousand target genes, primarily associated with the cell cycle processes. The formation of the DREAM complex consequently inhibits cell cycle progression and induces cellular quiescence. Given its unique role in cell cycle control, the DREAM complex has gained significant interest across various physiological and pathological contexts, particularly in conditions marked by dysregulated cell cycles, such as cancer.

View Article and Find Full Text PDF

Oral squamous cell carcinoma (OSCC) is a type of head and neck cancer (HNC) with a high recurrence rate, which has been reported to be associated with the presence of cancer stem cells (CSCs). Tribbles pseudokinase 3 (TRIB3) is involved in intracellular signaling and the aim of the present study was to investigate the role of TRIB3 in the maintenance of CSCs. Analysis of The Cancer Genome Atlas database samples demonstrated a positive correlation between TRIB3 expression levels and shorter overall survival rates in patients with HNC.

View Article and Find Full Text PDF

Ferroptosis plays a role in tumorigenesis by affecting lipid peroxidation and metabolic pathways; however, its prognostic or therapeutic relevance in pancreatic adenocarcinoma (PAAD) remains poorly understood. In this study, we developed a prognostic ferroptosis-related gene (FRG)-based risk model using cohorts of The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC), proposing plausible therapeutics. Differentially expressed FRGs between tumors from TCGA-PAAD and normal pancreatic tissues from Genotype-Tissue Expression were analyzed to construct a prognostic risk model using univariate and multivariate Cox regression and LASSO analyses.

View Article and Find Full Text PDF

Aristolochic Acid I (AAI) is widely present in traditional Chinese medicines derived from the Aristolochia genus and is known to cause significant damage to renal tubular epithelial cells. Genome-wide screening has proven to be a powerful tool in identifying critical genes associated with the toxicity of exogenous substances. To identify undiscovered key genes involved in AAI-induced renal toxicity, a genome-wide CRISPR library screen was conducted in the human kidney-2 (HK-2) cell line.

View Article and Find Full Text PDF

Novel insights into cuproptosis in alcoholic liver disease using bioinformatics analysis and experimental validation.

Int Immunopharmacol

January 2025

Hepatology Diagnosis and Treatment Center & Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China. Electronic address:

Cuproptosis is crucial in the development of various liver diseases, yet its involvement in alcoholic liver disease (ALD) remains poorly understood. In this study, we screened cuproptosis-related genes (CRGs) regulating ALD and explored their potential molecular mechanisms. Bioinformatic methods were employed to screen CRGs in ALD, analyze their functional enrichment, signaling pathways, transcriptional regulation, relationship with the immune microenvironment and pathogenic genes, and corresponding single nucleotide polymorphism pathogenic regions, and construct transcription factor-miRNA-mRNA networks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!