Molecular clones encoding nine consecutive biosynthetic enzymes that catalyze the conversion of l-dopa to the protoberberine alkaloid (S)-canadine were isolated from meadow rue (Thalictrum flavum ssp glaucum). The predicted proteins showed extensive sequence identity with corresponding enzymes involved in the biosynthesis of related benzylisoquinoline alkaloids in other species, such as opium poppy (Papaver somniferum). RNA gel blot hybridization analysis showed that gene transcripts for each enzyme were most abundant in rhizomes but were also detected at lower levels in roots and other organs. In situ RNA hybridization analysis revealed the cell type-specific expression of protoberberine alkaloid biosynthetic genes in roots and rhizomes. In roots, gene transcripts for all nine enzymes were localized to immature endodermis, pericycle, and, in some cases, adjacent cortical cells. In rhizomes, gene transcripts encoding all nine enzymes were restricted to the protoderm of leaf primordia. The localization of biosynthetic gene transcripts was in contrast with the tissue-specific accumulation of protoberberine alkaloids. In roots, protoberberine alkaloids were restricted to mature endodermal cells upon the initiation of secondary growth and were distributed throughout the pith and cortex in rhizomes. Thus, the cell type-specific localization of protoberberine alkaloid biosynthesis and accumulation are temporally and spatially separated in T. flavum roots and rhizomes, respectively. Despite the close phylogeny between corresponding biosynthetic enzymes, distinct and different cell types are involved in the biosynthesis and accumulation of benzylisoquinoline alkaloids in T. flavum and P. somniferum. Our results suggest that the evolution of alkaloid metabolism involves not only the recruitment of new biosynthetic enzymes, but also the migration of established pathways between cell types.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1069708 | PMC |
http://dx.doi.org/10.1105/tpc.104.028654 | DOI Listing |
Crit Rev Oncog
January 2025
GITAM.
Coralyne (COR) is a protoberberine-like isoquinoline alkaloid, and it is known for double-stranded (ds) DNA intercalation and topoisomerase inhibition. It can also sensitize cancer cells through various mechanisms. COR reduces the proliferation and migration of breast cancer cells by inhibiting the expression and activity of matrix metalloproteinase 9 (MMP9).
View Article and Find Full Text PDFJ Ethnopharmacol
January 2025
State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China. Electronic address:
Ethnopharmacological Relevance: Corydalisdecumbens (Thunb.) (CD) is a traditional Chinese medicine and as a single herb or formula has been used to treat RA for decades. Rheumatoid arthritis (RA) is a persistent, systemic autoimmune inflammatory disease.
View Article and Find Full Text PDFNat Commun
December 2024
Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China.
The activation of C-C bond of benzocyclobutenones under mild reaction conditions remains a challenge. We herein report a photoinduced catalyst-free regio-specific C1-C8 bond cleavage of benzocyclobutenones, enabling the generation of versatile ortho-quinoid ketene methides for aza-[4 + 2]-cycloaddition with imines, which offers a facile route to isoquinolinone derivatives, including seven family members of protoberberine alkaloids, gusanlung A, B, D, 8-oxotetrahydroplamatine, tetrahydrothalifendine, tetrahydropalmatine, and xylopinine. Furthermore, the catalytic enantioselective version of this strategy is also realized by merging synergistic photocatalysis and chiral Lewis acid catalysis.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, China; Kaifeng Key Lab for Cataract and Myopia, Institute of Eye Disease, Kaifeng Central Hospital, Kaifeng, China. Electronic address:
Coptisine (COP) is a natural protoberberine isoquinoline alkaloid that is isolated from Coptis chinensis and exhibits a variety of pharmacological activities, such as the inhibition of tumor growth, bacterial infection, inflammation and oxidative stress. In this study, COP penetrated and produced fluorescent signals in living tumor cell lines, primary MEF cells and polyformaldehyde-fixed cells. The fluorescent signal was detected at a wavelength of 488 nm.
View Article and Find Full Text PDFACS Synth Biol
December 2024
State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin 300457, PR China.
Benzylisoquinoline alkaloids (BIAs) are a class of natural compounds found in plants of the family, known for their diverse pharmacological activities. However, the extraction yields of BIAs from plants are limited, and the cost of chemical synthesis is prohibitively high. Recent advancements in systems metabolic engineering and genomics have made it feasible to use microbes as bioreactors for BIAs production.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!