The translocation and metabolism of polyamines during soybean germination were studied using 15N-labelled putrescine as a precursor. Both 15N-labelled and unlabelled polyamines were simultaneously detected using a novel application of ionspray ionization-mass spectrometry. 15N-putrescine was rapidly transported to the shoots and roots, where it was converted to spermidine and spermine. The main 15N-polyamine that accumulated in the root was 15N-spermine. It was found that there were differences in the way endogenous putrescine and exogenous 15N-putrescine were metabolized in soybean seedlings.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phytochem.2005.01.010DOI Listing

Publication Analysis

Top Keywords

soybean seedlings
8
15n-labelled putrescine
8
analysis polyamine
4
polyamine metabolism
4
metabolism soybean
4
seedlings 15n-labelled
4
putrescine translocation
4
translocation metabolism
4
metabolism polyamines
4
polyamines soybean
4

Similar Publications

We generated soybean mutants related to two ß-amyrin synthase genes using DNA-free site-directed mutagenesis system. Our results suggested that one of the genes is predominant in the soyasaponin biosynthesis. Soyasaponins, which are triterpenoid saponins contained in soybean [Glycine max (L.

View Article and Find Full Text PDF

A new cultivar 'Hisui no Kaori' opens up a fragrant type of lettuce ( L.).

Breed Sci

September 2024

Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan.

'Hisui no Kaori' is the first lettuce ( L.) cultivar characterized by a sweet fragrance, attributed to 2-acetyl-1-pyrroline with the same compound as in fragrant rice and soybean cultivars, as well as edible leaves and stem. Field cultivation trials established optimal planting distances at 30 cm between seedlings, with a fertilizer requirement of N = 150 kg/ha.

View Article and Find Full Text PDF

Enhancing soybean germination and vigor under water stress: the efficacy of bio-priming with sodium carboxymethyl cellulose and gum arabic.

Front Plant Sci

January 2025

National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China.

Seed priming can significantly enhance the tolerance of soybean against different environmental stresses by improving seed water uptake and modulating stress-response mechanisms. In particular, seed priming with sodium carboxymethylcellulose (SCMC) and gum Arabic (GA) can support seeds to withstand extreme conditions better, promoting more consistent germination and robust seedling establishment, which is crucial for achieving stable agricultural yields. The present study investigated the effects of seed priming using a combination of SCMC and GA (10% CG) on the germination, growth, and biochemical responses of six soybean varieties under drought and flooding stress conditions.

View Article and Find Full Text PDF

New Integrative Vectors Increase Agrobacterium rhizogenes Transformation and Help Characterise Roles for Soybean GmTML Gene Family Members.

Plant Cell Environ

January 2025

Integrative Legume Research Group, School of Agriculture and Food Sustainability, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia.

Hairy-root transformation is widely used to generate transgenic plant roots for genetic functional characterisation studies. However, transformation efficiency can be limited, largely due to the use of binary vectors. Here, we report on the development of novel integrative vectors that significantly increase the transformation efficiency of hairy roots.

View Article and Find Full Text PDF

Application of herbicide-degrading bacteria is an effective strategy to remove herbicide in soil. However, the ability of bacteria to degrade a herbicide is often severely limited in the presence of other pesticide. In this study, the atrazine-degrading strain Klebsiella varicola FH-1 and acetochlor-degrading strain Bacillus Aryabhatti LY-4 were used as parent strains to construct the recombinant RH-92 strain through protoplast fusion technology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!