This is the first crystal structure of a carbohydrate induced dimer of phospholipase A(2) (PLA(2)). This is an endogenous complex formed between two PLA(2) molecules and two mannoses. It was isolated from Krait venom (Bungarus caeruleus) and crystallized as such. The complete amino acid sequence of PLA(2) was determined using cDNA method. Three-dimensional structure of the complex has been solved with molecular replacement method and refined to a final R-factor of 0.192 for all the data in the resolution range 20.0-2.1A. The presence of mannose molecules in the protein crystals was confirmed using dinitrosalicylic acid test and the molecular weight of the dimer was verified with MALDI-TOF. As indicated by dynamic light scattering and analytical ultracentrifugation the dimer was also stable in solution. The good quality non-protein electron density at the interface of two PLA(2) molecules enabled us to model two mannoses. The mannoses are involved extensively in interactions with protein atoms of both PLA(2) molecules. Some of the critical amino acid residues such as Asp 49 and Tyr 31, which are part of the substrate-binding site, are found facing the interface and interacting with mannoses. The structure of the complex clearly shows that the dimerization is caused by mannoses and it results in the loss of enzymatic activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jsb.2004.11.011 | DOI Listing |
Chem Sci
January 2025
LAQV/Requimte, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto Rua do Campo Alegre, s/n 4169-007 Porto Portugal
Snake venom-secreted phospholipases A (svPLAs) are critical, highly toxic enzymes present in almost all snake venoms. Upon snakebite envenomation, svPLAs hydrolyze cell membrane phospholipids and induce pathological effects such as paralysis, myonecrosis, inflammation, or pain. Despite its central importance in envenomation, the chemical mechanism of svPLAs is poorly understood, with detrimental consequences for the design of small-molecule snakebite antidotes, which is highly undesirable given the gravity of the epidemiological data that ranks snakebite as the deadliest neglected tropical disease.
View Article and Find Full Text PDFFood Chem
December 2024
Key Laboratory of Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Beijing University of Agriculture, Beijing 102206, PR China.
Lipid hydrolysis and oxidation properties, lipid metabolites, and volatile flavors were investigated to elucidate the wet-aging process (1 h to 10 d) on lipid molecule transformation and volatile flavor evolution in pork. Phospholipase A (PLA) activity increased at 12 h, with lipoxygenase (LOX) increasing from 1 h to 7 d (P < 0.05).
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain.
Secreted phospholipase 2 (sPLA2) is the largest family of phospholipase A2 (PLA2) enzymes with 11 mammalian isoforms. Each sPLA2 exhibits different localizations and specific properties, being involved in a very wide spectrum of biological processes. The enzymatic activity of sPLA2 has been well described; however, recent findings have shown that they could regulate different signaling pathways by acting directly as ligands.
View Article and Find Full Text PDFComp Biochem Physiol C Toxicol Pharmacol
February 2025
Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia; School of Medicine, College of Life Sciences and Medicine, National Tsing Hua University, Hsinchu, Taiwan; Institute of Bioinformatics and Structural Biology, College of Life Sciences and Medicine, National Tsing Hua University, Hsinchu, Taiwan. Electronic address:
Food Funct
November 2024
Université de Lorraine, LIBio, F-54000 Nancy, France.
The bioaccessibility and bioavailability of dietary fatty acids depend on the lipid to which they are esterified, the organisation of theses lipids in water and their recognition by lipolytic enzymes. In this work, we studied the release of marine long-chain polyunsaturated fatty acids (LC-PUFA), depending on their presentation either in the form of phospholipids (PL) or triacylglycerol (TAG). Two formulations based on marine PL or TAG extracted from salmon heads () were prepared.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!